FAA.34.19. I

ţ

PULSED ACOUSTIC VORTEX SENSING SYSTEM Volume II: Studies of Improved PAVSS Processing Techniques

Royal N. Schweiger

Avco Corporation Systems Division 201 Lowell Street Wilmington, MA 01887

JUNE 1977

FINAL REPORT

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

Prepared for U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research and Development Service Washington DC 20591 NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

, Report No.	2. Government Access	on No.	3. Recipient's Catalog No.	
MA-RD-75-161 II				
ULSED ACOUSTIC VORTEX	SENSING SYSTEM		5. Report Date June 1977	
			6. Performing Organization	Cade
olume II Studies of	'Improved PAVS	S		Report No.
· Author's)				
Royal N. Schweiger*			DOT-TSC-FAA-74	-19,11
9. Performing Organization Name and Add	dre s s		10. Work Unit No. (TRAIS) 下A405/R7126	
Systems Division			11. Contract or Grant No.	
01 Lowell Street			DOT-TSC-620-2	
lilmington MA 01887			Final Report	rod Covered
12. Spensoring Agency Neme and Address J. S. Department of Tra	ansportation		August 1973 to	June 1974
Federal Aviation Admini	istration			
Systems Research and De	evelopment Serv	ice	14 Sponsnring Agency Cod	ie
Mashington DC 20591_		II C Donom	tment of Trans	ortation
13 Supplementary Holes * Under	contract to:	U. S. Depar	ion Systems Con	ter
		Transportat	are Cambridge	MA 02142
		Nenuarr oqu		
16 Abured Aves Corporation's Sys Pulsed Acoustic Vortex real-time detection, t trailing vortices.	tems Division (Sensing System) racking, record	designed and m (PAVSS). T ding, and gra	developed an er This system is a aphic display of	ngineered capable of f aircraft
 More Corporation's Sys Pulsed Acoustic Vortex real-time detection, t trailing vortices. This volume of the rep studies directed towar techniques for the PAV several improvements i (Scope Electronics, In to this volume. Other volumes in this Volume I Hardw Volume III PAVSS Volume IV PAVSS 	tems Division of Sensing System racking, record ort presents t d development SS. The volum on the software he, and Arcon C final report a ware Design S Operation and S Program Summa	designed and m (PAVSS). T ding, and gra he results or of improved y e recommends . The subcon orporation) a .re as follow. . Software Do .ry and Recom	developed an er This system is a aphic display of f two subcontra- vortex tracking the incorporat ntractor final are furnished a s: cumentation mendations	ngineered capable of f aircraft ctor software ion of reports s appendixes
 16. Abuved Avec Corporation's Sys Pulsed Acoustic Vortex real-time detection, t trailing vortices. This volume of the rep studies directed towar techniques for the PAV several improvements i (Scope Electronics, In to this volume. Other volumes in this Volume I Hardw Volume III PAVSE Volume IV PAVSE 17. Key Worde Pulsed Acoustic Vortex Vortex, Trailing Vorte tem, Aircraft Vortex T 	tems Division of Sensing System racking, record ort presents t d development VSS. The volum on the software he. and Arcon C final report a vare Design S Operation and S Program Summa c Sensor, Wake ex Sensing Sys- racking System	 designed and m (PAVSS). The ding, and grading, and grading, and grading, and grading of improved we e recommends. The subcond orporation) and the subcond orporation) and the subcond orporation) and the subcond orporation and	developed an er This system is a aphic display of the subcontra- vortex tracking the incorporat: ntractor final are furnished a s: cumentation mendations T IS AVAILABLE TO TH THE NATIONAL TECHN TION SERVICE, SPRING 22161	ngineered capable of f aircraft ctor software ion of reports s appendixes s appendixes
 16. Abuved Avec Corporation's Sys Pulsed Acoustic Vortex real-time detection, t trailing vortices. This volume of the rep studies directed towar techniques for the PAV several improvements i (Scope Electronics, In to this volume. Other volumes in this Volume I Hardw Volume III PAVSS Volume IV PAVSS 17. Key Worde Pulsed Acoustic Vortex Vortex, Trailing Vorte tem, Aircraft Vortex I 19. Security Clessif. (et this report) 	tems Division of Sensing System Fracking, record ort presents t d development VSS. The volum on the software he. and Arcon C final report a vare Design S Operation and S Program Summa C Sensor, Wake ex Sensing System (2). Security Cle	lesigned and m (PAVSS). The ding, and grass of improved we e recommends . The subcomporation) a orporation a . The subcomporation a . Software Do . The subcomporation a . Software Do . The subcomporation a . Software Do . S	developed an er This system is of aphic display of f two subcontra- vortex tracking the incorporat ntractor final are furnished a s: cumentation mendations ement TIS AVAILABLE TO TH THE NATIONAL TECHN TON SERVICE, SPRING 21. No. of Pages	ngineered capable of f aircraft ctor software ion of reports s appendixes s appendixes E U.S. PUBLIC NICAL FIELD, 22. Pute

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

PREFACE

The problems related to aircraft trailing vortices are currently under intensive study for the Federal Aviation Administration (FAA) by the U. S. Department of Transportation. The Transportation Systems Center (TSC) of the U. S. Department of Transportation (DOT) initiated and is carrying out several programs in this area, including programs to develop acoustic systems for detecting, tracking, and measuring the strength of aircraft wake vortices. Avco Corporation's Systems Division (Avco/SD) designed, built, and tested a pulsed acoustic vortex sensing system (PAVSS) under Contract DOT-TSC-620 in support of these DOT/TSC efforts. The software currently used in vortex tracking produces useful, but difficult-to-interpret data tracks. Avco/SD engaged two subcontractors to investigate possible improvements in the area of vortex tracking using pulsed acoustic data. This report presents Avco's recommendations regarding incorporation of various improvements proposed by the subcontractors, and includes the final reports prepared by each of the subcontractors.

This volume of the final report on the PAVSS program describes the approaches made toward improving the software used for vortex tracking. Other aspects of the system are covered in additional volumes (Volumes I, III, and IV).

The work performed under this contract was significantly enhanced by the close cooperation and contributions of Ralph Kodis, David Burnham, and Thomas Sullivan, all of DOT/TSC.

METRIC CONVERSION FACTORS

	Approximate Con	versions to Metri	c Measures		33		Approximate Conversions from Metric Messures								
Sumbol	Witten You Know	Mattialy by	To find	Symbol		Symbol	When You Know	Multiply by	To Find	Symbol					
								LENGTH	_						
		LENGTH													
			•			TER	millimeters	0.04	inches	10 in					
						¢m	centimeters.	0.4	Inches						
m	inches	Z.5	centimeters	cm	=	m	meters	3.3	teet						
ħ	fect	30	contimetors	cm			maters	1.1	your .						
vđ	vards	0.9	meters	m		8.CTT	Reformeters	0.0	111103						
mi	miles	1.6	kilometers	km	=										
		AREA						AREA	_						
		OHLO	•			,				2					
. 7				2	• <u>-</u> <u>-</u>	Cm.	square centimeters	0.16	square inches	···					
in"	square inches	6,5	square centimeter	2		۳,	square meters	1.2	square yards	¥0					
tt*,	aquare feet	0.09	square meters	m_		km*	square kilometers	0.4	square miles	- in					
Υd,	square yards	0.8	square meters	"	- = =_ :	ha	hectares (10,000 m [*])	2.5	acros						
mi*	square miles	2.6	square kilometers	10 ⁻⁰											
	acros	0.4	neclarox	113			-	ACC (mainha)							
		ASS (weight)						NASS (Weight)	-						
						9	grams	0.035	ounces	02					
02	ounces	28	grams	9		kg	kilograms	2.2	pounds	ю					
15	pounds	0.45	kilograma	kg		1	tonnes (1000 kg)	1.1	short tonz						
	short tons	0.9	tonnes	t											
	(2000 10)	VOLDMS						VOLUME							
		VOLUME	•					TOLOWIC	_						
150	12250003	5	milliliters	mt		m	milliliters	0.03	fluid ounces	fi oz					
Then	tablespoors	15	millititers	mi		1	liters	2.1	pinta	pt					
flor	fluid ounces	30	milliliters	mi	·	1	liters	1.06	quarts	qt					
n 04	C1173	0.24	liters			1	liters	0.26	gallons	5×1					
	nints	0.47	liters	i		m ³	cubic meters	35	cubic feet	#*					
1	CHARTS	0.95	liters	1		r,	cubic meters	1.3	cubic yards	vd"					
4. ani	astions	3.8	liters	1											
	cubic feet	0.03	cubic meters	m 3	=										
yd ³	cubic yards	0.75	cubic meters	۳3	° <u>-</u>		TEM	PERATURE (exa	<u>=1)</u>						
	TEME	FRATURE (exact)				<u>.</u>	0 -1-1	0/E (++	Fabrashait	•,					
						°C	temperature	add 32)	temperature						
۴.	Fehrenheit	5/9 (after	Celsius	°с											
	temperature	subtracting	temperature		= =				•	r					
		32)					°F 32	98.6	2	z					
							-40 0 40	80 120	0 160 500						
					,		╸╸┍╴┍╷╸┥╸╻	<u>╸┍╶┎</u> ╸╋╻┷╺┿							
							-40 -20 Ò	20 40 37	60 60 (6					
							-•								

•

TABLE OF CONTENTS

~

Section		Page
1.	INTRODUCTION	1-1
	1.1 Introduction to the Final Report	1-1
	Improved PAVSS Processing Techniques	1-2
2.	DISCUSSION	2-1
	2.1 Scope Electronics, Inc.2.2 Arcon Corporation	2-1 2-1
3.	RECOMMENDATIONS	3-1
App. A	AIRCRAFT WAKE VORTEX TRACKER, FINAL TECHNICAL REPORT, SCOPE ELECTRONICS INC., SEI REFERENCE 7063, dated 10 May 1974	A-1
App. B	VORTEX TRACKER REPORT, ARCON CORPORATION, R74-2W, dated 18 March 1974	B-1

1. INTRODUCTION

This introduction is presented in two parts. Paragraph 1.1 serves as an introduction to the complete final report; Paragraph 1.2 serves as an introduction to this volume (Volume II) of that report.

1.1 INTRODUCTION TO THE FINAL REPORT

Trailing vortices from heavy jet aircraft represent a currently undefined hazard, particularly during landing and takeoff operations. Considerations of safety and the need to optimize airport operation make it essential to acquire positive information about the presence and locations of vortices generated by heavy aircraft.

The feasibility of using multi-static pulsed acoustic radar to detect and track wake vortices has been demonstrated by the Department of Transportation's Transportation Systems Center (DOT/TSC) in tests at Logan International Airport, Boston, Mass.; at John F. Kennedy International Airport, New York, N. Y.; and at the National Aviation Facilities Experimental Center (NAFEC), Atlantic City, N. J. The hardware used during these tests consisted of laboratory models. The equipment was not engineered for long-term installation in the field, and was incapable of automatic real-time data processing and display.

This report describes a pulsed acoustic vortex sensing system (PAVSS) development program carried out by Avco Systems Division (Avco/SD) for DOT/TSC under Contract DOT-TSC-620. The goal of this program was to develop, build, and test an engineered wake vortex sensing system consisting of acoustic sensors and associated electronics; to acquire and process the sensed data; and to display this data visually in real time.

The complete final report on this program consists of this volume (Volume II, STUDIES OF IMPROVED PAVSS PROCESSING TECHNIQUES) and three additional volumes, as follows:

Volume I	HARDWARE DESIGN
Volume III	PAVSS OPERATION AND SOFTWARE DOCUMENTATION
Volume IV	PAVSS PROGRAM SUMMARY AND RECOMMENDATIONS

1.2 INTRODUCTION TO VOLUME II, STUDIES OF IMPROVED PAVSS PROCESSING TECHNIQUES

This volume of the Final Report on the Pulsed Acoustic Vortex Sensing System describes two studies carried out in support of that program. These were independent studies, carried out by Scope Electronics, Inc. and the Arcon Corporation under Avco/SD subcontracts, to investigate methods of improving automatic vortex delay tracking techniques. The final reports by these subcontractors are included in this volume as Appendixes A and B, respectively.

a. Background

Avco/SD designed and developed a PAVSS capable of detecting and locating trailing (wake) vortices produced by aircraft during landings. In achieving this capability, the system must track a series of acoustic pulses that have been refracted by a vortex (the vortex return). Such returns are slightly delayed relative to direct (line-of-sight, LOS) acoustic pulses. Avco/ SD developed a simple tracking algorithm designed to track both the vortex returns and the LOS returns in the presence of noise. This approach, while meeting the goal of simplicity, presented certain problems related to initial acquisition of a vortex return track, to tracking a vortex return close (in time) to an LOS signal, to bridging gaps in a vortex return track, and to stopping the track upon reaching the end of vortex return data.

Avco/SD, therefore, placed subcontracts with two companies (Scope Electronics, Inc., of Reston, Virginia, and Arcon Corporation, of Wakefield, Mass., Avco/SD Purchase Orders 259700 and 259699, respectively) to conduct independent investigations of tracker development. This was done to take full advantage of the current state-of-the-art expertise of these firms in the area of tracker technology.

Appendixes A and B are the final reports by Scope (Report SEI-7063, dated 10 May 1974) and Arcon (Report R74-2W, dated 18 March 1974).

b. Organization of Volume II

The remaining sections of this volume of the final report cover the areas described below:

Section 2 Discusses the major features of the investigation and approach followed by each subcontractor.

Section 3	Presents Avco/SD's recommendations regarding implementation of certain tracker features.
Appendix A	Final Report by Scope Electronics, Inc.
Appendix B	Final Report by Arcon Corporation.

1-3/1-4

2. DISCUSSION

This section summarizes the features of the approach that each subcontractor employed. Details regarding their efforts are contained in the appropriate appendixes (Appendix A for Scope, Appendix B for Arcon which are presented essentially as received).

2.1 SCOPE ELECTRONICS, INC.

Scope Electronics, Inc. started with the basic "minimum mean square error" tracker developed by Avco/SD for the PAVSS program and improved it in certain specific areas. The modifications consist essentially of a special starting routine, tighter tracking with a nonsymmetric tracking window, line-of-sight masking, and a temporary stop routine. These improvements were implemented and tested (using taped data covering 15 different landings). The results indicated that the modified program showed significant improvement in each of the problem areas.

The principal features of the Scope program are:

- 1. Tracking of the LOS data prior to aircraft arrival with appropriate guard bands.
- 2. Use of a delay tracker with:
 - a. A start routine that employs a bin approach.
 - b. Side track avoidance capability.
 - c. Provisions for re-starting when track gaps occur.
 - d. An effective stop routine.

Except for the LOS guard band provisions, all of the features proposed by Scope are new and are directly applicable to the PAVSS minicomputer software.

2.2 ARCON CORPORATION

The Arcon Corporation developed an entirely new tracking technique, one based upon use of a fixed-point smoothing algorithm. The algorithm represents an implementation of a Kalman-Bucy filter based upon an idealized model of track dynamics. Due to the fixed-point smoothing algorithm's efficiency, multiple tracking is possible, and its use overcomes the various tracking difficulties that were encountered using Avco's single-track technique. A simplified version of the Arcon method has been programmed and checked out. The program has only been given preliminary tests (with promising results). No formal test results were obtained.

The Arcon Corporation program features:

- 1. Multiple tracking, using:
 - a. Parent and trial tracks.
 - b. Track selection based on vortex calculations.
- 2. A smoothing approach based on the Kalman-Bucy filter.

Since Arcon provided no test runs using these features, their actual value in alleviating the present PAVSS software difficulties could not be determined. Avco/SD recommends that consideration be given to implementing several of the tracker improvements developed in the course of the Scope and Arcon investigations.

Initial test results obtained with the present Avco/SD-built PAVSS and its associated software indicate that the most pressing needs are for: (1) improved start, or delay track acquisition, and (2) better smoothing of the track after it is acquired. Track smoothing is also important from the viewpoint of production of more meaningful and more easily interpreted plot presentations. The features incorporated in the program proposed by Scope appear to satisfy all of these needs.

The bin approach to the starting routine, which is initiated when aircraft noise has subsided, should provide excellent initial acquisition of the delay track. The side-track avoidance, re-start, and stop routines should insure that the best delay track is maintained while the vortex remains in the receiver/transmitter field of view. This should prevent acquisition of ground clutter during acquisition of weak or intermittent delay track data.

Avco/SD strongly recommends that the PAVSS software be modified immediately to implement the features discussed above, thereby substantially improving the system's tracking capability.

The Kalman-Bucy filter approach investigated by Arcon had previously been considered by both Avco/SD and TSC. No test data has been supplied to evaluate the Arcon technique. It may, however, prove desirable to employ it in several test cases to permit its evaluation.

APPENDIX A

Aircraft Wake Vortex Tracker, Final Technical Report

Scope Electronics, Inc., SEI Reference 7063, dated 10 May 1974

A-1

AIRCRAFT WAKE VORTEX TRACKER

Final Technical Report

SEI Reference 7063 • 10 May 1974

ξ.

CONTENTS

.

1.	INTRO	ODUCTIC	DN .	•	• •	•	• •	• •	•	• •	•	•	•	•	٠	•	•	•	•	٠	٠	1
2.	THE 7	FRACKE	٤	•		•	•	•••	•		•	•	•	•	•	•	•	•	•	•	•	9
	2.1	The Ap	proa	ch		•	• •	• •	•		•	•	•	•	•	•	•	•	•	•	•	9
	2.2	LUS II		ng	Uni	.y	• • •			••	•	٠	•	•	•	•	•	٠	•	•	•	17
	2.5	2 3 1	Eas	ic	Rut	.ay min	יוו א סר	IMSE	; т Т 7	rac	ket	· r	· ·	ћ1	еп	•	•	•	•	•	•	15
			2.3	.1.	1	Sta	art										:	:	:	:	:	15
			2.3	.1.	2	Sid	le-7	[rac	:k		•						•	•				18
			2.3	.1.	3	LOS	S Ma	aski	ing	•	•	•	•		•	•		•	•	•	٠	23
			2.3	.1.	4	Clu	itte	er	•		•	•	•	•	•	•	•	•	•	•	•	25
			2.3	.1.	5	Sto	op g		•	• •	. :	•	:	:	•	:	•	٠	•	٠	•	27
		2.3.2	F10	ພູ ປ	har	ts.	and		mp	uta	t10	na	11	Re	equ	lir	сел	ien	its		•	31
			2.3	• 2 •	2	Do	art lav	Tre		ne	1mp	144	eme	en i	at	:10	л	٠	•	٠	•	21
		2.3.3	Fix	ed.	Poi	nt	Imr	len	ien	tat	ior	1 T I	of of	Tı	, .ac	·ke	•r	•	•	•	•	36
	2.4	Result	s.									• • •							:	:	:	39
											-	-	-	-	-	-	-	-	-	-	-	
3.	CONC	LUSIONS	S AND	RE	COM	men	NDA]	(ION	IS	•••	•	•	•	•	•	•	•	•	•	•	•	75
App	endix	A. RU	INNIN	GM	MSE	E DI	ELAY	ΥT	٦A	KER	CA	LC	CUL	LA]	CIC.	NS	5	•	•	•	•	77
App	endix	B. IN	IITIA	LV	ALU	JES	OF	THE	т	'RAC	KEF	ł	PAF	LA N	1ET	ΈF	٩S	•	•	•	•	79
App	endix	C. W#	KE U	ORT	ΈX	PR	OGRA	AM		••	•	•	•	•	•	•	•	•	•	•	•	81
REF	ERENCI	es	•••	•		•	•		•	• •		•	•	•	•	•		•		•	•	89

.

Z N O I T A A T Z U J J I

٤2	- £ 1	4	•	5	5ə2	3ut	eų:	נן	tə:	¥1	1	57.	[n	sə	R	uc	Ţļ	6 J	uə	шә	ρĮď	ωI		• 97	22	ųź	dno.	тцт	92 T
ZL	- 71	4	•	sa	ອນີເ	181	łD	əJ	. O J	t ə ƙ	I	31.	[n	sə	R	uo	ŢŢ	et	uə	ພອ	ρĮď	u I		•e;	Z٤	ųź	3no	түт	٤٧I
24	•	I Ə I	າດງ	sī	[4	(ខ)	[ə(IC	71	รเ	10	ţ 🕯 1	60	īĴ	ŢΡ	oM	8	uŗ	uŗ	eu	гэЯ	I	oł	1.	iei	IJ	мо	ГJ	.9t
22	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ə	uŗ	:1n	oЯ	7	JE	:1S	I	oj	1.	I B I	łD	мо	ЕJ	• S T
8 Z	•	•	•	٠	٠	•	•	•	•	•	•	•		cy	БТ	T	sn	Id	ə	sŢ	oN	P	ue	۲	[u()	sŗ	oN	. 4 I
92	•	•	٠	•	•	•	•	•	•	•	•	•	•	B	ŢŢ	əļ	τī	C	əu	Ţļ	no	R	do	₽S	ə	[9]	ŗss	Ъο	.ετ
54	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	8	uŗ	ŊS	eM	S	го	ə١	١Ţ	qs	ΡY	.51
zz	•	•	٠	•	•	•	•	•	2	łuj	; x :)e.	τŢ	- ə	рŗ	S	ļu	эл	əı.	d	07	м	op	uτį	4 5	tə:	14g	ΪŢ	•ττ
0Z	•	•	•	•	•	•	•	٠	•	٠	•	٠	•	•	٠		əs	τo	N	8u	ιŗγ	Эß	τŢ	ł	5	θĮċ	lwe	Бx	.0I
6T	•	•	٠	•	•	•	•	•	•	•	•	•	;	98	БШ	I	ļs	оų	ย เ	ឳប	ιīλ	SB	ıΤ	ł	b a	эŢċ	iwe	хЗ	•6
9 T	•	•	•	•	•	•	•	•	•	٠	•	•	•	•		uo	ŢŢ	сə	Įə	S	uŗ	B	əu	ŢŢ	າວາ	ł A	IIS	1 5	• 8
14	•	•	•	•	٠	•	•	٠	•	٠	•	•	•	•	ш	эŢ	qo	τd	1	le	:+S	ə	Чт	ł	5	эŢċ	lue	Εx	٠.
8	٠	•	•	•	•	•	•	•	•	2	•	•	SI	uo	Ţ₿	əу	8	uī	ss	ອວ	LO	ď	əţ	eli	eda	۶	JN	ь	•9
L	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•		1 n	đļ	no	J	эл	тə	Sec	ช 1	[83	οīċ	۲yı	A	۰s
9	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ш	eJ	:8e	τa	Ą	201	BJ	ພະ	ats.	λS	• •
¢	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8	uŗ	ss	ອວ	101	đ	נפו	uð	FS	80) [ei	uĄ	•2
z	•	•	•	•	•	•	•	•	•	•	•	•	•		1n	đą	.n0	J	эv	τə	ioe.	Я	Į6:	əpj	נו	[12]	οŗd	۲y	۰۲
ΛŢ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	u	οŢ	:1e	in	βŢ	Juc	າງ	យខ	ars.	λS	٦.

Figure 1. System Configuration

κ.

iγ

I noitcel

INTRODUCTION

For the sake of completeness, a brief description of the PAVSS and the front-end receiver processing will be given where applicable to vortex tracking. A typical configuration of the two vortices generated by an aircraft and the six transceivers used to transmit the acoustic pulse and receive the direct line of sight (LOS) return and the scatter the pulse from TR1, TR2, and TR5 forwards and vortex V₂ will scatter the pulse from TR1, TR2, and TR5 forwards. Figure 2 shows a typical return for an ideal (noise-free) receiver TR4. The analog processing of the receiver output and A/D conversion

τ

9**-**¥

Figure 2. Typical Ideal Receiver Output

2

A-7

are summarized in the following steps. For details, the reader is referred to Ref. (1), pp. 4-35 to 4-44.

- High-pass prefilter the signal to remove the low-frequency noise without attenuating the signal component.
- Pass through a synchronous detector which acts as both a narrow-band filter and a detector.
- 3) Find true derivative and reject negative derivative.
- 4) Find true integration (of positive derivative only) and reset to zero each time negative derivative is encountered. (The overall effect of 3 and 4 is to restore the signal but without the portions with negative slopes and start all portions with positive slopes from zero baseline.)
- 5) Compare with preselected thresholds and mark 1 (dot) for crossings with positive slopes. In the ideal receiver, the first crossing would be due to the LOS and the second due to the delayed return from the closest transmitter. (The preselected threshold is chosen on the basis of noise statistics, by computing a weighted sum of the noise mean and noise variation as in (5) pp. 3-79.)

Steps 1 through 5 are shown diagrammatically in Figure 3. This processed and digitized receiver data forms the basis for automatic detection and tracking of the line of sight (LOS) and

A-8

A-9

vortex returns. Knowing the geometry of the transceivers and the speed of sound, the LOS and delay tracker results are then used to compute the vortex position. Redundancy is built into the system because under ideal conditions only 2 receivers (transmitters) and 1 transmitter (receiver) are required to locate the vortex position which is given by the intersection of two ellipses with one common focus at the single transmitter (receiver) and the other foci at the two receivers (transmitters) as shown in Appendix C and D in Ref. (5). A system diagram is shown in Figure 4. This effort was restricted only to the part block diagrammed as "DELAY TRACKER." Magnetic tape consisting of processed and digitized data from 15 aircraft landings were provided for testing the performance of the "DELAY TRACKER".

A few points regarding the analog to digital (A/D) conversion should be noted. The amplitude and pulse width information of the analog return is lost, the threshold level is a constant and time sampling precludes getting more than one dot (1) in a sampling interval (approximately .5 msec.) in a given frame for all receivers. A typical receiver output after A/D conversion is displayed in Figure 5 in the form of a delay (approximately .5 msec. increments) vs. time (approximately .5 sec. increments) plot.

A-10

ACOUSTOGRAM CH. 3

Figure 5. A Typical Receiver Output

A-12

Figure 6. Four Separate Processing Regions

Section 2

THE TRACKER

2.1 The Approach

The receiver output and the analog processing done on it before digitization were briefly discussed in the previous section. A typical receiver output after digitization is shown in Figure 5. as a plot of delay (approximately .5 msec.) vs. time (approximately .5 sec.).

Our approach to tracking was to divide the output into four distinct non-overlapping regions functionally labeled as (1) LOS Track Only, (2) Noise, (3) Start and, (4) Delay Track Only. These regions shown in Figure 6 are categorized by the type of tracking done in them, i.e., LOS tracking only before aircraft arrival in (1), no tracking in aircraft noise, (2) Start routine only for the vortex delay track implemented in (3), and Vortex delay tracking only in (4). These forms of tracking will be discussed below.

2.2 LOS Tracking Only

Before the aircraft arrival, the tracks are relatively noise-free and the regions where the LOS tracks are expected can be closely specified. By restricting the LOS tracking to these tight regions,

the problem of tracking clutter can be easily overcome. For each LOS track there are two quantities of interest which must be extracted for later vortex tracking and calculations, i.e., the LOS running average and LOS running variation. Throughout this discussion the term variation will be used to describe a quantity similar to variance but differing in that it uses the absolute value of the error rather than the square of the error as shown in (2.2). This contributes to great savings in computation without degrading the performance.

Since the running average with a time constant of M would require the storage of M values, in general, a slightly different approach yielding a similar answer but requiring one storage element was found to be more appropriate as shown in (2.1) and (2.2). Subscript i represents the ith frame and Y_i the LOS value in ith frame.

LOS Running Average YS;

$$YS_{i} = \frac{M \cdot YS_{i-1} + Y_{i}}{M + 1}$$
(2.1)

LOS Running Variation YSS_i:

$$YSS_{i} = \frac{M \cdot YSS_{i-1} + |YS_{i} - Y_{i}|}{M + 1}$$
(2.2)

The LOS tracking is terminated as soon as the noise count in each frame exceeds a preset threshold based on the difference between aircraft noise count and the count in the relatively noise-free region prior to the aircraft arrival. The values of YS_i and YSS_i are accepted as the final values for the LOS and LOS variation respectively for use in the vortex delay tracking and other vortex related calculations. As for the aircraft noise region ideally no tracking at all is done during this interval.

Experimentally it was found that a region of 20 increments (approximately 10 msec.) on either side of the expected LOS was more than sufficient for tracking LOS. Also the time constant M = 40 was implemented. It was further found that the results are not degraded even if the tracking is continued into the aircraft noise region. This is true because of the fact that the time constant M = 40 is much larger than the aircraft noise region. As far as the experimental results are concerned this was the procedure that was followed with the above parameters. They are shown in Figures 17 through 31 with suffix b as

NF = - LOS = - LOSV = -

where

NF = Total Number of Frames used for averaging LOS= Final LOS average in approximately .5 msec increments LOSV = Final LOS Variation in approximately .5 msec. increments

A-16

Table 1

RUNNING MMSE DELAY TRACKER

<u>Given:</u>

Frame No. = i
 Delay = Y_i

Want:

1) Estimate Delay = \hat{Y}_{i}

Need:

Running averages of,

- 1) Frame No. = \overline{t}
- 2) Delay = \overline{Y}_i
- 3) Variance of Frame = σ_i^2
- 4) Covariance of Frame, Delay = $\sigma_{i\gamma_i}$

Additionally:

5) Track-Density = α_i 6) Delay Error = $|Y_i - \hat{Y}_i|$ <u>Answer:</u> $A = \frac{\sigma_i \gamma_i}{\sigma_i^2}$ $B = \overline{Y}_i - \overline{T} \cdot A$ $\widehat{Y}_i = B + A \cdot i$

2.3 Running MMSE Delay Tracker

Once the aircraft noise has subsided significantly (ascertained by the noise count in a frame) it is possible to do the delay tracking. Since the LOS mean and variation were finalized prior to the aircraft arrival they will be assumed to remain unchanged during delay tracking. This approach not only reduces the number of computations required during delay tracking, (essential for real-time tracking with a minicomputer), but also keeps the LOS mean and variation free of any vortex interference. This is especially true for low-lying vortices close to the LOS.

The quantities required for the running minimum mean square error (MMSE) delay tracker are shown in Table 1 for clarity. The computations required for the MMSE delay tracker are tabulated in Appendix A. Again, as in the LOS calculations, it is convenient to deviate slightly from the exact running average in order to save on the storage requirements. The exact running average would require a storage of as many quantities as the time constant (e.g. N in the case of α_i), however, the modified approach requires only one storage element per running average as shown in Appendix A.

A-18

Figure 7. Example of the Start Problem

14

A-19

2.3.1 Basic Running MMSE Tracker Problems

The basic delay tracker as implemented by AVCO was found to suffer from the 5 problems categorized below:

- 1) Start
- 2) Side-track
- 3) LOS Masking
- 4) Clutter
- 5) Stop

2.3.1.1 Start

Start refers to the difficulty in acquiring a delay track at the beginning. The twin problem of acquiring the right track and acquiring it as fast as possible was found to be the most important flaw in the basic delay tracker. An example of the start problem. is shown in Figure 7.

The solution to the start problem was to divide the vortex delay into two regions, the first region would be exclusively used for implementing the Start Routine and the following region for delay tracking. The Start Routine was to accomplish the delay track acquisition correctly and as fast as possible with no more computations required than those used for the delay tracking. To

A-20

Figure 8. Start Routine Bin Selection

this end the idea selected was to divide the receiver region above the LOS into horizontal, sloping and offset sloping bins as shown in Figure 8.

A score of the number of hits occurring in each bin is kept until one of them crosses a preselected threshold. In case of a draw between the horizontal bin and the sloping bins a preference is given to the sloping bins. When two or more bins with the same slope tie, the uppermost bin is selected.

The delay point within the winning bin and its slope are then used to initiate the delay tracking. All the initial values of the tracking parameters in Appendix A are computed as if the number of hits in the winning bin occurred consecutively and with the slope of the bin as shown in Appendix B. This assures continuity and proper weighting of the past delay data.

As far as the implementation of the Start Routine is concerned, a bin width of 10 increments or about 5 msec was found to be optimum. It was found convenient to ignore the contents of the first 2 horizontal bins and 4 sloping and offset sloping bins immediately above the LOS because of the concentration of noise close to the LOS and the fact that the vortices generally require

A-22

reasonable amount of time before they descend to such low heights. Because of the ease with which vortices with large delays were acquired and their rapidly descending nature and the available computer storage it was found sufficient to include only 8 horizontal and 16 sloping and 16 offset sloping bins. Also the Start Routine was terminated if the threshold was not crossed after searching through 60 frames (approximately 30 sec). Results of the above implementation are presented in Figures 17 through 21.

All of these parameters may be changed if the situation warrants it. If the storage requirements of the minicomputer necessitate it, the elimination of Offset Sloping Bins would not affect track acquisition significantly, however, it would affect the total time required for track acquisition.

2.3.1.2 Side-track

Side-tracking refers to the problem of getting off the main delay track and tracking a ghost image as shown in Figure 9 or tracking into a false track composed of noise as shown in Figure 10. This difficulty arises due to the fact that when a hit belonging to the correct delay track does not occur, the tracker picks any other closest hit which occurs within the frame and starts tracking along the new path.

A-23

Figure 9. Example of Tracking Ghost Image

A-24
ACOUSTOGRAM CH. 4

Figure 10. Example of Tracking Noise

A-25

The solution to this problem was to reject any hits which occur outside a preselected window around the predicted estimate of the delay. Since the Start Routine enables us to pick the correct track with greater confidence, we can afford to put a tighter bound around the delay tracker. To allow the tracking of upward rising vortices the window is made wider on the upper side as shown in Figure 11. A variable window based on the delay tracker variation was also tried and found to be inappropriate for the type of vortex data provided. The variable window which has a tendency to get very narrow as the delay tracker goes through smooth data quite often loses the track during transition from smooth to rough data and therefore this idea was abandoned.

As far as the implementation is concerned, a window of 7 increments (approximately 3.5 msec) on either side with an extra margin of 7 increments on the upper side was found to give satisfactory results. These values may be changed slightly without affecting the results significantly; however, it was found necessary to retain the asymmetry in the window to track the upward rising vortices without substantially affecting the tracking of normal descending vortices. Some of the results can be seen in Figures 22 through 24.

A-26

Figure 11. Tighter Window to Prevent Side-Tracking

2.3.1.3 LOS Masking

LOS masking refers to the problem of tracking the vortex delay as close to the line of sight as possible. This is especially true for the low-lying vortices close to ground which persist for a long period of time. The problem of delay tracks which interact with the LOS and disappear into the LOS only to reappear later as distinct delay tracks will be dealt with in the Stop Routine.

The solution, which gave favorable results, was to select a region above the LOS based on the LOS statistics which would be off limits to the delay tracker as shown in Figure 12. The region was set equal to two times the LOS variation or 5 increments (approximately 2.5 msec.) whichever was maximum. The minimum value of 5 increments appears to be a reasonable number to allow for the interaction of the vortex with the LOS.

The above criterion together with the tighter asymmetrical window with a smaller value on the lower side, keeps the delay tracker from getting pulled by the LOS and yet there is enough flexibility to track vortices which may rise again.

In the implementation, the off limits region above the LOS was chosen as the maximum of two times the LOS variation or 5 increments and the lower window was set to 7 increments (approximately

A-28

Figure 12. Adaptive LOS Masking

3.5 msec). The results of the LOS masking (some with the STOP routine) are shown in Figures 25 through 28.

2.3.1.4 Clutter

Clutter problems can be divided into two categories, clutter within the expected region for delay tracking and clutter outside this region. In the 15 landings that were examined no obvious cases of the former were noticed. A suggested solution for the clutter within the delay tracking region would be to track these before the aircraft arrival in the segment marked LOS Tracking Only in Figure 6. Once the clutter tracks are known they can be used in the Start Routine by eliminating those horizontal bins which contain clutter from consideration. Once the correct start is made, the tighter window around the delay tracker will keep it from being sidetracked_by clutter.

As far as the clutter outside the expected delay tracking region is concerned, these can conveniently be accomplished by masking out those regions completely. In the implementation it was found that the horizontal bins above 120 increments (approximately 60 msec) from the LOS were not required, hence clutter in this region would not pose any problems. Figures 31 and 32 show the results.

A-30

Figure 13. Possible Stop Routine Criteria

Finding suitable criteria for stopping the tracker was another problem encountered in implementing the basic delay tracker. The three criteria shown in Figure 13 as 1) Track Density, 2) Noise Density and 3) Delay Error were examined for their applicability.

- 1) Track Density refers to the running average of density of hits within the delay tracker window. It is shown as α_i in Appendix A.
- 2) Noise Density refers to the running average of the density of frames with more than one hit above the LOS masking region per delay track.
- 3) Delay Error refers to running average of the absolute error between the calculated estimate and the actual delay which is shown as D in Appendix A.

Except for the noise only situations, the track density parameter α_i or a slight variation thereof was found to be quite sufficient for stopping the delay tracker. Since the track density parameter is restricted to a tight window around the delay tracker, the delay error criterion was found to be redundant for this case.

The problem of distinguishing noise only situations from noise plus delay track situations as shown in Figure 14 proved to be

A-32

Figure 14. Noise Only and Noise Plus Track

more difficult. Since the noise density criterion as stated earlier (#2 in Figure 13) would give similar results in both these cases and since the tracker always chooses the path with the minimum mean squared error through either of these cases, it would appear that none of the criteria in Figure 15 would be able to distinguish between these two cases.

It seems that the noise density criterion needs to be modified. One promising approach would be to consider the noise density in the tight window around the delay tracker instead of the larger delay frame. This would keep the noise density for the noise only case relatively unchanged but drastically reduce the noise density in the noise plus delay track case.

As far as the situation where the delay track disappears in the LOS and reappears later to hover above the LOS is concerned, it was found convenient to make the first stop a temporary one and initiate a Restart Routine. The Restart Routine consists of looking through the tighter window for a preselected number frames until the number of hits crosses a certain threshold which in general is the same as that in the Start Routine. If the number of hits does not cross the threshold then the delay tracker is terminated for anot cross the threshold then the delay tracker is terminated the delay tracking is resumed until the second stop which termithe delay tracking is resumed until the second stop which terminat-

η**Ε-**Υ

6Z

A slight modification of this would be to reinitiate the Start Routine after the first temporary stop. Since the temporary stop generally occurs close to the LOS and noise is also more pronounced close to the LOS, the Start Routine may initiate tracking of noise only. This problem may be alleviated somewhat by 1) choosing only those Start Routine bins which are above the lower bound of the temporarily stopped delay tracker, 2) assigning a different slope to the Sloping Bins, and 3) decreasing the bin width since fewer bins are required.

In Figures 17 through 32 a slight modification of track density criterion was implemented. The delay tracker was temporarily stopped when there were no hits in 8 consecutive frames within the tracker window. The tracker, however, continues looking through the window and updating all the parameters and if the number of hits within the window exceeds 6, restarts tracking until 8 consecutive no hits in the window. Also if the number of hits within the delay tracking window does not exceed the threshold of 6 in the remaining frames, the Restart Routine stops the delay tracker permanently. In general, a number such as 60 consecutive frames (approximately 30 sec) would be more reasonable for the Restart Routine implementation. The results of the Stop Routine implementation can be seen vividly in Figures 26 through 30.

A-35

2.3.2 Flow Charts and Computational Requirements

Since the basic tracker is the same as that implemented by AVCO (1), i.e., minimum mean square error delay tracker, its flow chart computational requirements and timing will not be discussed here. The flow chart, time and storage requirements for all the additions and modifications discussed in the previous sections will be the subject of this section.

2.3.2.1 Start Routine Implementation

The flow chart for the Start Routine is shown in Figure 15. The first conditional branch marked "START=1" decides whether the Start Routine or the delay tracker is in effect. START is of course initialized to 0 beforehand. The box computes the bins in which the delay point lies, i.e., J2 for horizontal, J4 for sloping and J6 for offset sloping, and then adds one to the previous number of hits in the appropriate bin, i.e., HITSH for horizontal, HITSS for sloping and HITSO for offset sloping. The following three conditional branches update the maximum number of hits, MAXH if any of the latest bins exceed the previous maximum, otherwise MAXH remains unchanged. The delay and the slope of the bin corresponding to the maximum is also updated or left alone in parallel with MAXH as shown in the three boxes to the right.

At the end of the frame a conditional branch compares the maximum number of hits MAXH thus far with the threshold HTHR to decide whether to continue Start Routine or to initiate delay

31

A**-**36

tracker. The last conditional branch compares the total number of frames gone through so far with the preselected threshold to decide whether to continue the Start Routine or Stop permanently.

The time and storage requirements for the above Start Routine on PDP-11 with the extended Arithmetic Unit (KE11-A) are as follows.

Time: 6 Conditional branches 4 Multiplies/Divides 6 Adds

approximately 45 µsec. per track

Storage: 8 Words HITSH 16 Words HITSS 16 Words HITSO 6 Words Miscellaneous

46 Words total per track

There are a few observations worth noting about the Start Routine.

- 1) It is inherently fixed point.
- 2) Although the storage requirement appears to be high compared to the storage requirement for the delay tracker, the time requirement is much lower.
- 3) Since each word is expected to be less than 4 bits, these words can be packed 4 to 1 in the 16-bit computer word requiring approximately 12 computer words. The time required for scrambling and unscrambling the words is traded for lower storage.
- 4) Since the Start Routine and delay tracker are operating in mutually exclusive intervals, the storage can overlay that used by the delay tracker.

Figure 16. Flow Chart for Remaining Modifications to Delay Tracker

2.3.2.2 Delay Tracker Additions

The flow chart for the remaining modifications under the categories of side-tracking, LOS Masking, Clutter and Stop are shown in Figure 16. The first three-conditional branches combine the solution to side-tracking and LOS Masking. The first branch eliminates data points within LOS variation. The next two branches accept points within the tracker window around the predicted estimate, Y_{i-1}. The following two conditional branches on the left choose the point with the lowest error, d_{old} . The following right branch performs all the delay tracker updating when d_{old} has been changed from its initial large value, otherwise it goes through the Stop Routine. The following conditional branch compares the number of consecutive no hits to a threshold and Stops the first time if the threshold is exceeded. The conditional branch "STOP = 1" decides whether it is a first temporary stop or second final stop. STOP is of course initialized to 0 at the beginning.

The maximum time and storage requirements for the above delay tracker modifications on PDP-11 with the Extended Arithmetic Unit (KE11-A) are as follows:

Time:

5 Conditional Branches 1 Subtract 1 Absolute Value 2 Stores

Approximately 23 µsec. per track A-40

Storage: LOSV Y_{i-1} d_{old} y_{old}

36

4 words per track

It is important to note that some of the storage shown in the flow chart i.e., low, up, are common to all tracks and that the path marked "NO HIT CALCULATION" requires an insignificant number of computations compared with "HIT CALCULATION" and also occurs less frequently. Therefore, the above time and storage requirements represent the most frequent and time consuming computational additions to the basic delay tracker. In Ref. (1), the time required for the basic delay tracker calculations was estimated as 300 usec. per track in fixed point arithmetic, so the above additions which are also in fixed point arithmetic represent an increase of approximately 8%.

2.3.3 Fixed Point Implementation of Tracker

This section deals with the problems involved in using the finite 16-bit word length of the minicomputers such as PDP-11 to do the delay tracker computations. It should again be emphasized that all the additions and modifications done on the basic tracker are inhorently fixed point and the 16-bit word size is amply sufficient

A-41

for accomplishing the Start Routine or the additions to the basic delay tracker. Therefore, we shall be concerned only with the basic tracker computations in fixed point arithmetic.

It can be safely stated that except for the two second order <u>non-central</u> moments in Appendix A, most of the remaining computations can be done in fixed point arithmetic by scaling the quantities up and occasionally rescaling if necessary. Since the 16-bit word allows up to 65536 levels of quantization, this should be quite sufficient for all the quantities in Appendix A except XSS; and XYS; as shown below:

$$xss_{i} = \frac{M_{s} \cdot xss_{i-1} + i^{2}}{M_{s} + 1}$$

and,

$$XYS_{i} = \frac{M_{s} \cdot XYS_{i-1} + i \cdot Y_{i}}{M_{s} + 1}$$

Maximum values of i and Y_i (normalized to LOS) were found to go as high up as 300 frame increments and 120 delay increments

respectively, hence i^2 exceeds the 16-bit word size and i . Y_i is very close to the limit. The solution to this problem is to use centralized second order moments as follows:

$$\operatorname{Var}\{X\}_{i} = \frac{M_{s} \cdot \operatorname{Var}\{X\}_{i-1} + (i - XS_{i})^{2}}{M_{s} + 1}$$

and,

Т

$$Cov{XY}_{i} = \frac{M_{s} \cdot Cov{XY}_{i-1} + (i - XS_{i})(Y_{i} - YS_{i})}{M_{s} + 1}$$

Maximum values of (i - XS_i) and (Y_i - YS_i) should not go beyond the time constant (=10 frames) and the larger tracker window width (=14 increments) respectively. Besides keeping the values low, it also reduces the number of multiplies by 2 since the slope A is directly given by Cov/Var.

As far as the track density running average, α_i is concerned since it ideally represents an integral number of hits per (N + 1) frames, it should not require any more quantization than (N + 1) levels. In order to avoid the degradation due to the cumulative effect of division every change of frame, the following procedure should work:

$$a_{i-1} = \frac{N \cdot a_{i-2} + \beta_{i-1}}{N+1} = \frac{(Num)i-1}{N+1}$$

--

$$\alpha_{i} = \frac{(Num)_{i-1} - \alpha_{i-1} + \beta_{i}}{N+1} = \frac{(Num)_{i}}{N+1}$$

For the present frame i, by using mainly the numerator from the previous frame calculation the deterioration from the fixed point division is avoided in the iterative process. This also reduces the number of multiplies by one at the expense of increasing the storage by one.

Assuming M_s is quantized to the same level as α_i i.e., (N + 1) or approximately 4 bits, and XS_{i-1} , YS_{i-1} do not exceed 8 bit word size for integral number of frame and delay increments, that still leaves 4 more bits for finer quantization of XS_i and YS_i .

Although the fixed point version of the basic tracker was not implemented as such the results of the modified delay tracker still hold since the changes applied to the basic tracker are all in fixed point arithmetic.

2.4 Results

This section discusses the effect of the various modifications to the basic delay tracker on actual field data after analog processing and A/D conversion by AVCO. The following data were examined.

A-44

39

No. of Landings 15 No. of Receivers/Landing 6 No. of Delay Tracks/Receiver 3

44

Total no. of Tracks examined 270

For the sake of brevity, of the 270 delay tracks only those which gave problems with the basic tracker and the corresponding improvement from the modifications are shown in Figures 17 through 32. From the figures it can be seen that:

- 1) The Start Routine with the Horizontal, Sloping and Offset Sloping Bins significantly improves the wrong start and late start problem.
- 2) Tighter delay tracking eliminates sharp discontinuities, wrong tracks and tracking the LOS.
- 3) Non-symmetric window around delay tracker enables tracking of upward rising vortices and prevents tracking LOS.
- 4) Masking of a region 2 times LOS variation.allows tracking as close to LOS as statistically possible.
- 5) Temporary stop allows for tracking of delay tracks which disappear into LOS only to reappear later as low-lying tracks which tend to persist.

From the visual observation of the modified delay tracker results of the 270 tracks it can be stated that the miss rate (or tracking wrong tracks) was 2 to 3%. An example of miss is shown in Figure 26b. Most of the misses were due to situations similar to those shown in Figure 26b, where there are two equally strong delay tracks. Some misses occurred due to wrong start through noise.

NOT USED

ÿ

2

1

.

•

Noisy situations where there is no visible delay track or the delay track is buried in too much noise accounted for 12% of the total 270 cases. Although the modified noise density criterion was not implemented, it is believed that its use would significantly improve the rejection rate of noise only situations without worsening the miss rate of 2 to 3%. Since there is a built-in redundancy in the PAVSS, both the miss rate and the false alarm rate would be drastically reduced when the redundant tracks are omitted from consideration. Theoretically, since only 2 tracks out of the possible 18 are nonredundant, the above percentages could be reduced by a factor of as much as 9, assuming uniform distribution.

1

`

Figure 17b

0**2 -**A

**

Figure 18b

£

ACOUSTOGRAM CH.

N

¢

l

-8

Inproved Track from Figure 20a (\sim 100 samples into frame)

Figure 20b

Improved Track from Figure 21a (~100 samples into frame)

Figure 21b

ក្ក

Improved Track from Figure 22a (~700 samples into frame)

Figure 22b

54

A-60

A-

55

Figure 23b

a-62

Figure 24b

/1

٠

Figure 25a

59

Figure 25b

TE

569/9/91

АСОИSTOGRAM CH. 2

۰.

4.

. -

۹,

A-66

.

ł.

Improved Track from Figure 26a (~100 samples into frame)

Figure 26b

£

ACOUSTOGRAM CH. 5

Э.

٠

A-68

.

62

.

Improved Track from Figure 27a (~100 samples into frame)

Figure 27b

A-69

●.

•

*

•

ACOUSTOGRAM CH. 4

A-70

۹.

•

Figure 28b

A-71

ACOUSTOGRAM CH.

A-73

67

Figure 29b

ACOUSTOGRAM CH. 5

68

A-74

٠

.

A-75

Figure 30b

٠

....

A-76

Figure 31b

A-77

...

a-78

ACOUSTOGRAM CH. 3

٤T

Figure 32b

••

67**-**A

NOT USED

A-80

Section 3

CONCLUSIONS AND RECOMMENDATIONS

The objectives of this effort were to come up with an algorithm for the tracking of LOS and vortex delay which did not have any of the problems associated with the basic minimum mean square error (MMSE) tracker, so that it can eventually be implemented in real-time on a minicomputer such as PDP-11. In spite of the fact that the processed and digitized data did not contain the amplitude and bandwidth (or pulse width) information, which were considered to be serious handicaps, all the goals of this effort have been accomplished and suggestions for improvement and further work are also made.

Starting with the basic MMSE tracker, all the problems associated with it were individually analyzed and various solutions tried. Successful solutions consisting of the Start Routine, tighter tracking with non-symmetric window, LOS masking and temporary stop were implemented and tried on a wide cross-section of track data from 15 landings. Furthermore the solutions consisted of simple procedures done in fixed point arithmetic which can easily be added to the basic tracker with realistic storage and time requirements.

A-81

For further improvements in the rejection rate for the noise only situations it is recommended that the modified noise density criterion mentioned in Section 2.3.1.5 be implemented. It would also be interesting to further pursue the fixed point arithmetic suggested in Section 2.3.3 for the basic tracker by implementing the total modified tracker in fixed point arithmetic and trying it on the same 15 landings or any other later improved data. Real-time implementation of the final algorithm coded in machine language on a minicomputer such as PDP-11 would also be of great value.

A-82

Appendix A

RUNNING MMSE DELAY TRACKER CALCULATIONS

N = Time constant of running average of track density
M = Time constant of running MMSE tracker
i = Frame number
Y_i= Value of the delay point in frame i
=1 if a hit occurs in frame i
B_i
=0 otherwise

TRACK DENSITY,
$$\alpha_i = \frac{N \cdot \alpha_{i-1} + \beta_i}{N+1}$$

TC MODIFICATION, $M_s = \alpha_i \cdot M$

FRAME NUMBER,
$$XS_i = \frac{M_s \cdot XS_{i-1} + i}{M_s + 1}$$

DELAY,
$$YS_{i} = \frac{M_{s} \cdot YS_{i-1} + Y_{i}}{M_{s} + 1}$$

(FRAME) · (FRAME) XSS₁ =
$$\frac{M_s \cdot XSS_{i-1} + i^2}{M_s + 1}$$

A-83

$$(FRAME) \cdot (DELAY), \qquad XYS_{i} = \frac{M_{s} \cdot XYS_{i-1} + i \cdot Y_{i}}{M_{s} + 1}$$

$$SLOPE, \qquad A = \frac{XYS_{i} - XS_{i} \cdot YS_{i}}{XSS_{i} - XS_{i} \cdot XS_{i}}$$

$$INTERCEPT, \qquad B = YS_{i} - XS_{i} \cdot A$$

$$DELAY ESTIMATE, \qquad Y_{i} = B + A \cdot i$$

$$DELAY ESTIMATE, \qquad D_{i} = \frac{M_{s} \cdot D_{i-1} + |\hat{Y}_{i} - Y_{i}|}{M_{s} + 1} , \text{ if } B_{i} = 1$$

$$D_{i} = D_{i-1} , \text{ if } B_{i} = 0$$

, 1 , , ć ; p.

=

÷

5

z

Appendix B

INITIAL VALUES OF THE TRACKER PARAMETERS

Assume the Start Routine gives,

1) hit threshold = MAXH

•

- 2) winning delay = MAXI
- 3) winning bin slope = SLOPE

Track Density, $\alpha_{IN} = 1$

Frame Number, $XS_{IN} = (MAXH + 1)/2$

Delay, $YS_{IN} = (MAXI - SLOPE \cdot (MAXH - 1)/2$

(Frame) • (Frame), $XSS_{IN} = (MAXH+1)(2 \cdot MAXH+1)/6$

(Frame) • (Delay), XYS_{IN} = $\frac{MAXI(MAXH+1)}{2} - \frac{SLOPE}{MAXH} \cdot \left(\sum_{i=1}^{MAXH-1} i \cdot (MAXH-i) \right)$

Delay Error, D_{IN} = 0

NOT USED

Appendix C

.

3

2

ŝ

*

5

WAKE VORTEX PROGRAM

ł

DIMENSION, IDETA (SED) , ALF	HA (500), XS (578), YS (500)
DINENSION X58(520),XYS(5	22),0(328),01(208)
01MENSION 105(200) 01MENSION 105(200)	¥(507)
014FNS108 JX(574), JS(532	(), JSU(522)
014245104 Y (542) . Y145221	,YS11523),XYS115281
DINENSION RALPH(503), IRE	
	5231, URALP (5281
340 CORMAT (19/17 / 15/17/17/17)	FRSUS_TIME_PLOT_FOR, 1)
330 FORMAT (' FILE NO. = '+12	5,1 POVR, NO, = 1, 13.1 RETURN INTL. TO. = 1, 13)
350 FORMATCH THE CONST. N=1,	3, 1 THE COMST, M=1, 13, 14 CSV=1, 13, 14 ERR=1, 13)
360 FORWAT(! WIDER WHDW.#!)	3, W.OF BINGS', 13, MIN, F HI S/61.4 (10)
	A3. () CO CNT(T116, RALPH MAGNO CMAGN()
310 FORMAT (112)	
230 FURMAT (100, 4241, F6, 3, F	6.2,F6.2, 13,F6.3,F6.3,F6.3)
320 FORMAT (MUL OF FRAMES=	· · · · · · · · · · · · · · · · · · ·
450 FORMAT(1x+4313)	
250 FORNATCI IFLE PICVE PIN	ITL ? - [31)
<u>ACCEPT_252.15L2,1049.14</u>	
IF(IFLE+18) 402,402,404	
251 CONTINUE	ST 21 05V 21EAP 2 + 131)
M=5	
1ERH=4	1151 - 51152 HIN - OF HITS 2112 - 1311
253 FORMIT(' WIGER WNOW,7 W	IDLH OL ATMOL WIN'A OL HTIONDINE - 10.1
NNH25	
1 W W = 1 3 0	
<u> </u>	
182=23	
NS=43	
NIBETHK/IBH	
1841=134=1	
202 FURMAT (10) DDINT 342	
PRINT 338, IFLE, ICVR, INI	TL
PRINT 352, N.M.LOSV.IER	3
PRINT 360; INDE, IEN, MNH	NE. & DECEIVER NO. INFO. IN THE ADDRESS
1400222446	
ISTRTEIADDR+15	
IEND=IADOR+14	
C INITIALIZE ALL STATISTI	CAL VARIABLES (FRANE, DELAY, ERROR, ETC.)
ALPH1(2)=0,	
<u>xS(2)=3,</u>	
YSCOLEINITL	
VSS115111L	- <u> </u>
VSS(1)=0.	A-00
82	

1

•

.7

.

	XSS(")=0,
	XX\$.(@).#0
	0(7)=2.
Ç	INITIALIZE ALL BINS TO ZERO HITS
412	- 7x(I)=2
	J20(t)=9
41-3	
G	INITIALIZE THE RETURN FOR FIRST FRAME TO BLANKS
224	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	IX(I)=Id
	-INITIALIZE-START, RECORD-NO+, ERAME-NO,, THRESHOLD-X-ING, 8-DELAY-HIT
	- M3 + K L = V
	ND511-100
······································	
	58AJ-0 1866-1
	IBSe0
	CALL DEFINE FILE (1,004,10,10AT) DATE G AN
212	
120	
Č	GO THROUGH 49H ADDRESSES AND 492 DATA PULLER DEP DESCO
_	DO 202 I=1,498
	J=10ATA(1,1)
	<u>IF(JSTRT=1) 245,257.248</u>
24ó	IF(J-ISTRT) 241,244,241
241	IF(J.NE. IFRAM) GO TO 247
	NF=NC+1
	185=3
	YS(4F)=YS(NF-1)
	<u>YSS(DE)=YSS(NE-1)</u>
247	IF(J.NE.ICVR) 30 TO 202
	10EL=10ATA(1,2)
	JOEL-INEL-INITL
····	JDAzlabs(JDSL)
	IF(JDA.GE, INS) GO TO 202
	IF (.VF. GT. NS) GO TO 618
	N1FNF+1
019	
022	
	TO(NF)=(N1+TS(NF=1)+IDEL)/(N1+1)
	LUDLIFADS(LSTI-IDEL)
	154 2574 65 4 265 1 243
247	1 (LC321) 00 (LC32) 50 (D 245
<u> </u>	LADESCO14
	196-4
	TOD(MT/*(N1*TD>(N1-1)+LOSE)/(N1+1)
	1031131
	A #

•

<u>.</u>

÷

•

	LOSV=YSS(NF)
	_GO_TO_222
230	FORMAT(1 NF=1,15,1 LOS=1,15,1 LOSV=1,15)
244	_JSI <u>kI=1</u>
	PRINT 300
	PRIVI 2027AP (LUS)LUSV
	LOSVEMAXETLUSVISI
	SU THE CAC
251	1F(J)EG(1) (K)/ (V - N) (G 1F(NE) (T, 4) (G TD 232
245	TE (1-1ERAM) 232.212.238
21 2	TE(/STAT-1) 442.441.444
447	NDRL18133
	NDFI ?=133
	1E(NF.GE, 36) GO TO 232
	IF(MAXJ,LT.MNH) GO TO 446
	NSTRIE1
	ESTY=MAXI
	NDEL1=ESTY-JER3
	NDEL2=ESTY+IERR
·	
	NF=mVH
	NEM1=NE=1
	<u>YS(NF)=(ii++1, J/2,</u>
	YS(NF)=MAX1=49-WF M1/2.
	<u>XSS(4) A(ME+L+JA(ME+L+JA(ME+L+JA))</u>
	15UM=15UM+K1N+M1N
47	
140	VYS(UE) = NAX10(UE+1.)/2. = ARISUM/NE
	D(NF)=2.
	CD (NE) = 0
	R=YS(NF)-XS(NF)+A
	<u>GO TO 446</u>
44	4 IBSF=IBSF+1
46	4 JST07=1
	<u></u>
44	6 CONTINUE
	IF((USTUP.ED.1), AND, (LAST DE MART) - 60 10 202
	IF(JSTOP.LT.1) GD TO 466
	NDEL1=133
	NDFFS=190
46	
	1X (NACT) = 107
	での「そう」 クロット:
	TE(D(NE), GT. 2.71) PMEALPHA(NE)/((RALPH(NE)+1.)+D(NE))
	The Property of the state and the state of the

C	PRINT VALUES OF THE DATA POINTS EVERY CHANGE OF FRAME
	PRINT_232.((X(L))L=1,92), ALPHA(NE), D(NF),
é	CD(VF), ICNT, RALPH(NF), BM, CBM
	1F(NFST.GE, 50) GO TO 232
<u> </u>	INTIALISE AUG OFTION FOR FACILITY TO DEVICE
v	DO 312 KALING ALIURN FOR EACH FRAME TO BLANKS
312	1X(K)=1H
C	INTERALIZE DELAY HIT, THRESHOLD NETWO AND DELAY PROOF FOR FIGH FROM
•	188a?
- 	18ETA (NE) = 2
	1 CN T = 0
	1RET(NE)=0
Ç	NI=NF-1, MI=NF-1, FOR NF & OR = THE TWO TIME CONSTANTS N AND M
	<u>1F(NE-N) 715,715,713</u>
716	N1=NF+1
	60-TC-722
718	利 <u>1</u> 半月
	CONTINUE
	IF (NF-F) /24,724,725
774	
728	
6	GURTINUE UPDATING OF THE STATISTICAL MADIAN DE AN FACH RUDER AND ARADA A
	BAL DURING ANT AND DURING AND THE AND
	ALPERANT TATALATER AND ALPERANT TRETAINER AND A AND AN
	AMS24LPH4 (NE) ++1
	$XS(; E) = XS(N e_{\pi})$
	YS(NF)=YS(NF-1)
	X\$\${NF}=X\$\${HF=1}
	XYS(1F)=XYS(NF-1)
	ESTY=3+NF PA
	NDEL1=ESTY-IERR
	NDEL29ESTY+1EA5
	D(NF)=D(NF-1)
2:18	
234	
274	
······································	
C	GOEFICELEUS AGGEFICATA POINT COP GIVEN POVO IE NITHIN CINEM DE AN INFERNA
	IF (JDEL-INW) 226,226,222
236	IF (JCEL) 202, 262, 277
207	IX(JOEL)=IS
	EXCLUDE THE DATA POINT IF TOO CLOSE TO GRADUND (LOSV)
	1F(JDEL-LOSV) 202.222.229
209	CONTINUE
	IF(MSTRT-1) 434,436,436
434	
422 ,	J1=JREL+18W1
	JZRJ1/IJW
•	J3=J7EL+ISLP+NF+IB:1
۱. ۱	12=11:CF+18M5+18M1+12Fb+VL
	JO ~ J ? / J B &
_	A-91
	85

•

•

,

•

.

	1+(2)=JX(JZ)+1
	1+(oL)2CL=(oL)
	<u>1F(JS(J4)hJX(J2))_458,454,454</u>
452	IF(JX(J2)-JSO(J6)) 451,451,453
453	FF(JX(J2)=MAXJ)_426,426,432
432	(2C)XC=UXAM
	MAX.L=JDEL
	▲ ≖ድ.
426_	
	GO TO 457
454	1F(JS(J4) - JSO(J5)) = 51.451.452
455	IF(JS(J4)-MAXJ) 456,458,458
458	
	MAXI=JDEL
	AEC, -15LF
456	CONTINUE
	<u>CO_TC_457</u>
451	1F(JSO(J6)-MAXJ) 457.457.459
459	151 J27
	MAKI=JDEL
<u> </u>	A=0,-15LP
457	CONTINUÉ
436	CONTINUE
•••••••••	ICNT=ICNT+1
	IF(IGNT,GE,2) IRVET(NF)=1
<u></u>	$\mathbf{RALPH}(\mathbf{NF}) = (\mathbf{N} + \mathbf{RRALPH}(\mathbf{NF} + 1) + \mathbf{RREL}(\mathbf{NF} + 1) \times \mathbf{RREL}(\mathbf{NF} + 1) + \mathbf{RRELPH}(\mathbf{NF} + 1) + \mathbf{RREPH}(\mathbf{NF} + 1) + \mathbf{RREPH}(\mathbf{RRPH}(\mathbf{NF} + 1) + \mathbf{RREPH}(\mathbf{RRP} + 1) + \mathbf{RREPH}(\mathbf{RRP} + 1) + \mathbf{RREPH}(\mathbf{RRP} + 1) + \mathbf{RRPH}(\mathbf{RRP} + 1) + \mathbf{RRPH}($
	CRALP(NF)=(('IF-1)+CRALP(NF-1)+IRBET(NF))/NF
C	IS THE HIT WITHIN WIDER WINDOW AROUND ESTY?
	ILOW=ESTY-INDE
. <u>.</u>	IUPP=ESTY+1_DE+7
	1F(JDEL.L1.1LGA) GO TO 202
	IF (JEEL GI, 19PP) GF TO 282
C	THRESHOLD CROSSING CHANGED TO I FOR ACCEPTED POINT
	IBETA (NE) =1
C	NI=NE-1, MIERE-1, FOR NE C OR = THE TWO TIME CONSTRATS & AND H
	[F(NF-N) 213,210,228
516	
	<u> </u>
518	N1ªN
522	CONTINUE
	IF(N ² -4) 524,524,526
524	
	GO TO 525
526	M134
525	CONTINUE OF THE STATISTICAL VARIABLES AT FACH THRESHOLD CROSSING
<u> </u>	
	CALPHINE JACINE ALVERTEN NET TO LEVEN JACK
······································	
	ALPHA(N))= (N) + ALPHA(N) = 1) = (D) + (D) + (N) + (V) + (A) + (A
	ANSTALFHAINFIGH
	ADINE / FIGHADINE - 17 191 / / /// 41/
······	WE1 (NS) = (AMSAYS (NE=1.)+Y1 (NE))/(AMS+1)
	TOTAL AND A
	UVS1/NF1=/AdSpXYS(NF=1)+NF*Y1(NF))/(AMS+1)
	15/15-11 564.554.562
544	A1 3 A
	B1 #2
	A-92
86	

•

۶

ي

چ

		GO TO 563	
	562	-41=(-XYS1('NF-)=X3(NF)+YS1(NF))/(XSS(NF)-XS(NF)+XS(NF))	
		B1=Y51(NF)-XS(NF)+A1	
	563.	-CONTINUE	
•		ESTY1=51+NF+A1	
		-E9RY1=48S(E3TY1=Y1(-4F))	
		D1(NF) = (4MS+D(+F-1) + ERRY1)/(4MS+1)	
•		-IF(IRB-1)-552,554,554	
•	554	[F(ERRY1-CRRY1 553,553,544	
	222	Y(XF)=Y1(NF)	
	•	VVC/. 5 / = 4/VC/ / A/C /	
		Alation Jewi Siline J	
		A=R1	
		FSIV=ESIV1	
		ERRY=ERRY1	
		-D(ME)=D1(ME)	
		CD(NF)=(CAMS*CD(NF=1)+ESRY)/(CAMS+1)	
		NDEL1=ESTY+1ERR	
		NDEL2=ESTY+1ERR	
		JDG2=J9EL	
		-IX(JUEL)FIST	
		IF(ERRY-IERR) 502,502,505	
	502	_185£=U	
<u>.</u>		IF(JSTOP,LT,1) GD TO 505	
-		_IRST=IRST+1	
	5 0-	IF(IEST,GE,MAH) JSYCP≃Ø	
			_
3	244	CONTINUE	
	6.8.6.		····
		60 TO 212	
	232	CONTINUE	
		PRINT 320, MF	
		PRINT 460, (JX(1K),1K=1,22)	····
		PRINT 450, (JS(1L), 1L=1, 40)	
		PRINT 450, (JSC(1M), 1M=1,40)	
		<u>60 TC 321</u>	
	424	CONTINUE	
		STCP	
		END	
			····
·			
•			······································
•			
•			
·	······		
-			
-			
		A 02	
			07
-			0/
		·	

NOT USED

REFERENCES

- Pulsed Acoustic Vortex Sensing System Design Evaluation Report, AVCO Government Products Group, AVCO Systems Division; for Department of Transportation, Transportation Systems Center, Cambridge, Mass. under Contract No. DOT-TSC-620.
- Aircraft Wake Vortex Sensing Systems, D. Burnham, M. Gorstein, J. N. Hallock, R. Kodis, T. Sullivan and I. G. McWilliams, Transportation Systems Center, Cambridge, Mass., June 1971, Technical Report for DOT/FAA.
- Vortex Sensing Tests at NAFEC, D. Burnham, J. Hallock, R. Kodis, T. Sullivan, Transportation Systems Center, Cambridge, Mass., January 1972, Technical Report for DOT/FAA.
- 4. Vortex Sensing Tests at Logan and Kennedy Airports, T. Sullivan, D. Burnham, R. Kodis, Transportation Systems Center, Cambridge, Mass., December 1972, Final Report for DOT/FAA.
- 5. Extracts from a Proposal for Pulsed Acoustic Vortex Sensing System, AVCO Government Products Group, AVCO Systems Division; for Department of Transportation, Transportation Systems Center, Cambridge, Mass. under Request for Proposal TSC/TEC-0062-GF, 7 December 1972.

APPENDIX B

ż

3

Vortex Tracker Report

Arcon Corporation, R74-2W, dated 18 March 1974
R74-2W

VORTEX TRACKER REPORT

18 MARCH 1974

TABLE OF CONTENTS

ī

,

.....

?

,**e**.

•

r

*

	Page
VORTEX TRACKER REPORT	1
General Status	1
Design Outline	1
Figure 1. Delay Tracker Features	12
Figure 2. Input Processing	13
Figure 3. Track Files	14
Figure 4. Smoothing Equations	15
Figure 5. Tracking Parameter Lookup	16
Figure 6. α , β Values Used in Delay Tracker	17
Figure 7. Equivalent Data Weights	18
Figure 8. Track Status Transitions	19
Figure 9. Primary/Secondary Correlation	20
Figures 10-11-12-13. Correlation/Smoothing for Delay Tracks 2	21-24
Figure 14. Variance Factor of Position Prediction Errors Due to Data Noise	25
Figure 15. Variance Factor Contours and Optimal $lpha$, eta Curve	26
Figure 16. Optimal $lpha$, eta Curves and Damping Contours	27
Figure 17. Optimal $lpha$, eta Start-Up Sequence	28
Figure 18. Optimal $lpha$, eta for Missing Data Sequence (λ = 0.05)	29
Figure 19. Optimal $lpha$, eta for Missing Data Sequence (λ = 0.01)	30
Figure 20. Determination of Bin Sizes	31
Figure 21. Deviation Variance Behavior in Start-Up Sequence	32
APPENDIX A. DELAY TRACKING PROGRAM	33

VORTEX TRACKER REPORT

General Status

The following brief report is an account of a new design for the delay tracker in the AVCO pulsed vortex tracking system. The philosophy of this design is to produce an integrated and efficient algorithm which remedies some of the observed performance deficiencies of the current system. Among these difficulties are:

- a. Excessive running time due to use of floating point arithmetic.
- b. Erratic start-up of tracks.
- c. Failure to correlate data with track in ambiguous situations.

The new system is a more consistent and powerful practical method for delay tracking.

Additionally, a simplified version of this general design has been programmed and checked out for use with the AVCO delay tracking simulator. The simplification has been to omit the secondary search procedure and the generation of split tracks in ambiguous data situations. The program has undergone preliminary tests (only as a means of checkout) and results are encouraging. No formal test results are available at this time.

Further development of this program would require parameter tuning to optimally match data characteristics. The full algorithm should also be implemented to assess the effectiveness of its additional features. Extensive testing should be performed to validate the algorithm performance with real data.

Design Outline

The following design description is organized around Figures 1 through 13. The remaining figures provide some background information.

1

. . .

Figure 1. Delay Tracker Features

All fixed point processing is used to minimize computer running time. The smoothing algorithm is such that special scaling to preserve accuracy is unnecessary and it may be programmed in fixed point directly as written. (Delays from zero to maximum are accommodated with sufficient accuracy by the fixed point fractions 0 to 1.)

The smoothing algorithm is computationally very efficient and estimates track position and velocity recursively. It is a Kalman-Bucy filter based on an idealized model of track dynamics but should be empirically useful in the present context.

Each receiver/transmitter combination is handled separately for tracking. For each combination several tracks may be held simultaneously. This permits tracking of ghosts or baseline in addition to the main track; but, more importantly, if one track inadvertently follows false data, a second track can simultaneously acquire and follow the true data. The choice between them is made on the higher level when their data are selected for vortex calculations.

In order to select the best from among several tracks, running measures of the status and quality of a track must be kept. These measures are:

- a. Type status The track is being initiated upon (still tentative), it is undergoing normal tracking (normal), or it is a split (parent or trial).
- b. Firmness A measure of the past consistency of data-track correlations which controls smoothing constant and bin size selection.
- c. Hit/Miss Count A count of consecutive hits for initiation decisions or of consecutive misses for drop decisions.

Multiple tracking and a variety of data situations are handled by an extended correlation logic. This logic implements a continuing

B-5

auto-initiation of new tracks on any data frame. It also selects the best data for each track and performs all track status decisions. In particular, when data of a normal track is missing in the primary bin, it constructs a larger secondary bin. A unique datum in the secondary bin leads to a split trial track, while the original track is also extrapolated (the parent). This situation is resolved on subsequent frames.

Figure 2. Input Processing

Input processing is executed once per frame.

Input data is screened to eliminate known fixed targets and the baseline returns (if desired). This is accomplished as in the current system by assigning gating times which are used to suppress all delay reports in the desired time intervals.

The data is next sorted into a set of input tables, one for each of the 36 receiver/transmitter combinations. Each data word consists of a delay time and a separate bit (normally zero) which can be set to indicate that the data has been utilized for track processing.

Figure 3. Track Files

Track information is kept in a set of track files, one for each receiver/transmitter combination. Each file has room for a maximum of several tracks (four tracks have been alloted in the initial program version). Each track slot consists of three words.

The first track word (0) contains information on track status. Bit 0 is an occupancy indicator showing whether or not the track slot is being used. If the slot is not occupied, the additional information in it is old and of no consequence. Bits 1-2 indicate the status type of the track (see Figure 8). Bits 3-5 are used if this is a parent track (for a track split). They indicate which of the tracks in the file is the trial (split) track associated with this parent. Bits 6-10 hold the firmness of the track (see Figure 5). Bits 11-15 contain the hit/ miss count which is utilized in track initiation and drop decisions (see Figure 8).

The second track word (1) contains the smoothed "position" (actually time delay) estimate of the track. It is the quantity used directly in vortex position calculations.

The third track word (2) contains the smoothed velocity estimate which is necessary for the internal operation of the smoothing algorithm.

These estimates are fixed point quantities, fractions whose scaling can be fixed once and for all by considering the maximum delay as the unit of position. The velocity can be held as the per frame change of delay.

Figure 4. Smoothing Equations

The smoothing equations recursively update position and velocity estimates of each track using the track's data for each frame. The equations are a practical implementation of a two-state Kalman-Bucy filter.

The first step is to extrapolate the previous smoothed position, velocity to the present frame time (a one-frame advance). Then the deviation between the datum delay time d_n and the predicted position (delay time) \hat{D}_n is calculated, and fractions (α , β) of it are added to the predictions to produce the updated, new smoothed position, velocity.

In the case where no data is available on a frame, the extrapolated values are accepted as the new smoothed values. In such cases, when a new datum is finally found on a later frame, the β constant is modified by dividing by the number of frames since the last data was received (information available from the miss counter). Normally,

B-7

for steady, no-miss data conditions, this divisor will be one.

Figure 5. Tracking Parameter Lookup

The selection of α , β smoothing constants is implemented by a table lookup which is keyed upon the track firmness F_n . Firmness ranges from 0 to 15 in steps of 1. When the first datum is received for a track, a firmness of 0 is assigned. Subsequent hits increment F_n by one, while misses decrement it by two. The subsequent F_n excursions are limited to the range 1-15.

As the firmness increases, the appropriate α_n , β_n decrease to provide increased smoothing. The maximum value of F_n which is permitted is a compromise between the maximum degree of smoothing desired vs. the need to follow quick variations in the delay dynamics. The value 15 is only an initial guess of the appropriate parameter.

Search bins sizes are also made functions of firmness. The values listed are only illustrative and may be calculated from the known standard deviation (σ) of delay noise. The bin size for $F_n = 1$ is additionally based on the expected maximum change of delay position per frame. Bin sizes, Δ_n , may require experimental adjustment, since the theory on which they are based oversimplifies the actual track dynamics.

Figure 6. a, & Values Used in Delay Tracker

The α , β values listed in the firmness table are taken from a standard curve which can be derived by Kalman theory. (Except for the $F_n = 0, 1$ values which are special.) We have,

в-8

$$\alpha_{n} = \frac{2(F_{n}+1)}{(F_{n}+1)(F_{n}+2)} \qquad (F_{n} > 1)$$

$$\beta_{n} = \frac{2\alpha_{n}^{2}}{2 - \alpha_{n} + 2\sqrt{1 - \alpha_{n}}}$$

$$\Delta_{n} = \frac{4\sigma}{\sqrt{1 - \alpha_{n}}}$$

Figure 7. Equivalent Data Weights

The α , β smoothing is linear for constant α , β . Thus the impulse response of the filter, the weighting of the past data values to achieve a position (or velocity) estimate, can be exhibited. This figure shows the position estimate weights for the α , β at a steady firmness of 15. It reveals that the weights are approximately exponentially tapered over about 10 samples.

Figure 8. Track Status Transitions

The possible track statuses are tentative, normal, parent and trial.

A tentative track is created when data is initially received. It requires N consecutive hits to be verified as a real track (rather than noise). The status then changes to normal. If any miss occurs during the tentative period, the track is dropped and must be reacquired if new data arrives.

A normal track is maintained until too many consecutive misses are counted. It is then dropped and must be reacquired if data continues.

Under special circumstances (no data in primary search bin, one datum in larger secondary bin), the normal track splits into: a parent

track which extrapolates without data, and a trial track which follows the data. A special α , β selection may be appropriate for this trial track smoothing, since a fast dynamic variation is indicated, and α , β should not be too small to follow it.

On the next frame, the trial track survives (becomes normal, and the parent is dropped) only if the parent receives no data in its primary bin and the trial receives one datum in its primary bin. Otherwise, the trial track is dropped and the parent reverts again to normal.

Neither parent, trial or tentative, tracks can be split in this manner, and secondary search is unnecessary for them.

Figure 9. Primary/Secondary Correlation

As noted above, primary search is applied to all tracks, and the additional secondary search is used only with normal tracks.

Bins are constructed by centering at the predicted position, \hat{D}_n , for this frame. The primary tolerance is $\pm \Delta_n$, and the secondary, if needed, is $\pm 1.5 \Delta_n$. The enlargement factor can be experimentally adjusted.

Figures 10-11-12-13. Correlation/Smoothing for Delay Tracks

These figures exhibit the proposed correlation/smoothing program flow logic. This logic is entered three times for each frame processing of a track file. Pass 1 processes the normal and parent tracks in a file. Pass 2 processes the trial tracks, and pass 3 processes the tentative tracks. This order is necessary because the various track categories have different priorities of access to the available data. Data which are used in any pass are so marked in the input file, and cannot be used by a subsequent track or in a subsequent pass.

The logic contains the features previously described. Some

additional points are as follows:

5

- Before changing a tentative track to normal, its final estimated velocity is checked against prescribed limits to reject all tracks with impossible velocities. (Bin size also limits excessive velocity excursions implied by the first two data points.)
- b. If a normal track has more than one datum in the primary bin, that nearest to the prediction is selected. However, such a condition is counted as a partial miss (miss increment of l) to prevent continued tracking through heavy multiple noise reports. (Ordinary misses increment the miss counter by 2.)
- c. If a track file is full, splits cannot be accommodated and a normal track is continued as a missed data case (not shown).
- d. Following the three passes through primary/ secondary correlation, some unused data may remain in the input file. This data is utilized to set up new tentative tracks (initiation processing). The data is selected in order of the largest delay time (as is done in the current AVCO system) and set in the position estimate word of an unoccupied track slot. The velocity is set to zero. The occupied bit and other status information are initialized (status = tentative, $I_n = 1$, Hit count = 0). Note that the insertion of position data is equivalent to a smoothing step in which $\alpha = 1$, $\beta = 0$.

Background

Figures 14-21 provide some background material relating to the firmness control of α , β and bin sizes.

Figure 14. Variance Factor of Position Prediction Errors Due to Data Noise.

This figure gives contours of equal position prediction smoothing in the α -B plane. Of special note is the stable triangle of α , β values.

Outside this triangle the recursive filter is unstable. The standard deviation of position prediction (due to noise effects) is K σ where σ is the standard deviation of data noise, and K² contours are exhibited in the figure. Small α , β , in general, imply heavy smoothing, but the smoothing effects are rather modest for the range of values considered in present design. The exact formula is

$$K^{2} = \frac{2\beta + \alpha(2\alpha + \beta)}{\alpha(4 - 2\alpha - \beta)}$$

Figure 15. Variance Factor Contours and Optimal α , β Curves

This figure restricts the α -8 plane to the practical region (the unit square) and redraws the K² noise contours of the previous figures (now called K²₁). In addition, contours for errors from another source are also plotted. These are errors produced by a simplified model of the track maneuver dynamics. The simple model assumes that the frame to frame accelerations are independently selected from a zero mean distribution with prescribed variance (a²).

Optimal selection of α , β is based on keeping one source of error constant while minimizing the other (this is equivalent to minimizing a weighted sum of the two errors). A locus of appropriate α , β is thus generated by the points of mutual tangency of these two sets of contours. The "standard" α , β curve is thus produced. A specific α , β selection from this curve then depends on the relative weight given to the two error effects.

Figure 16. Optimal a, 8 Curves and Damping Contours

An alternate approach to α , β selection is to examine the transient response of the filter to abrupt changes in data. Pole-zero positions can be calculated and damping factors can be determined (for the envelope

*

of samples). This analysis reveals that the desirable damping factor of $\zeta = .7$ produces an α, β curve close to the previously determined standard.

Figure 17. Optimal a, B Start-Up Sequence

The foregoing figures and analyses were based on steady-state assumptions. By utilizing the same models, the problems of start-up and missing data can also be analyzed. This figure shows the optimal start-up sequence of α , β (small circles) which begins at $\alpha = 1$, $\beta = 1$ and descends asymptotically to a particular steady-state point. By repeating this calculation with various relative weights on noise/maneuver error effects, other sequences can be generated. These α , β points all lie between the standard curve and the "start-up envelope" curve. Successive points fall somewhere on the heavy traces shown in the figure.

Since the start-up envelope is perturbed only very modestly from the standard curve, we adopt values of α , β on the latter also for startup. The first point ($F_n = 1$) is an exception where the true start-up value $\alpha = 1$, $\beta = 1$ is utilized.

Figures 18-19

These figures illustrate a similar calculation for missed data in which the frames-since-last-data factor (T_n) used in velocity smoothing (see Figure 4) has been utilized. Starting from the steady-state condition (SS), it successively assumes that one miss, two misses, etc. occur. During the misses, the track is, of course, extrapolated. On the first datum after the misses, the optimal α , β are plotted (labeled 1M after one miss, 2M after two misses, etc.). On the second datum, the optimal α , β drop to near the steady-state value.

The calculations are made for two different steady-state starting

B-13

conditions in the respective figures.

These results indicate that near optimal α , β for missed data conditions can be selected from the standard curve with a suitable firmness control and a T_n factor correction.

Figures 20-21

The optimal adjustment of bin sizes is based on a comparison of false report density with the probability density of the predicted position of the report. The width of the latter distribution is produced by the noise/maneuver errors described previously. If data is missed, the width increases but the height of the distribution decreases. At first this increases the appropriate bin, but finally, the bin narrows and vanishes.

These effects are built into practical design only very roughly. Thus, the enlarged secondary bin is utilized only in a very restricted way. Also the vanishing of a bin is equivalent to the decision to drop a track, which is implemented directly by counting consecutive misses.

The remaining figure illustrates results of a calculation of deviation (difference between data and predicted position) variance during track start-up. The different curves are for different noise/maneuver weightings and lead to different steady-state values. Since the suggested maximum firmness is 15, the appropriate steady-state parameter is $\lambda \approx .005$ (see Figure 15). By following this curve and multiplying the standard deviation by a safety factor of 3.5 to 4, bin sizes listed in Figure 5 are obtained. (Cf. the simpler formula given in the description of this figure. This formula assumes a $\lambda = 0$ curve, which leads to nearly the same result.)

B-14

DELAY TRACKER FEATURES

٠

F

155

.

- ALL FIXED POINT PROCESSING (FOR SPEED)
- EFFICIENT SMOOTHING ALOGRITHM
- MULTIPLE TRACKS PER RECEIVER/TRANSMITTER
- FINER DISTINCTIONS ON TRACK QUALITY/STATUS
 - TYPE STATUS
 - FIRMNESS
 - HIT/MISS COUNT
- EXTENDED CORRELATION LOGIC
 - CONTINUING AUTO-INITIATION
 - PRIMARY/SECONDARY SEARCH
 - TRIAL (BRANCHING) TRACK INITIATION
 AND RESOLUTION

B-15

ι .

13

đ

FIGURE 3.

TRACK FILES

- ONE FILE FOR EACH RECEIVER/TRANSMITTER
- SEVERAL TRACKS PER FILE
- THREE WORDS PER TRACK

• WORD NO. 0 (STATUS)

5

B-17

FIGURE 4.

SMOOTHING EQUATIONS

- . RECURSIVE
- PRACTICAL IMPLEMENTATION OF AN OPTIMAL KALMAN FILTER
- . EXTRAPOLATE

$$\hat{\hat{D}}_{n} = \hat{D}_{n-1} + \hat{D}_{n-1}$$
$$\hat{\hat{D}}_{n} = \hat{D}_{n-1}$$

SMOOTH

.

$$\hat{\mathbf{D}}_{n} = \hat{\mathbf{D}}_{n} + \alpha_{n}(\mathbf{d}_{n} - \hat{\mathbf{D}}_{n})$$
$$\hat{\hat{\mathbf{D}}}_{n} = \hat{\hat{\mathbf{D}}}_{n} + \frac{\beta_{n}}{\mathbf{T}_{n}} (\mathbf{d}_{n} - \hat{\hat{\mathbf{D}}}_{n})$$

. USE D IN VORTEX CALCULATION

D _n , D	SMOOTHED POSITION, VELOCITY
î, D _n , D _n	PREDICTED POSITION, VELOCITY
d _n	DELAY DATA
α _n , β _n	SMOOTHING PARAMETERS
Tn	FRAMES SINCE LAST DATA

15

æ

Firmness	Position Smooth	Velocity Smooth	Search Bin
F _n	~~~~	β <u>n</u>	Δ <u>n</u>
0	1.000	.000	
1	1.000	1.000	7.3σ ↔ Δt · v _{max}
⁻ 2	.833	.700	9.8σ
3	.700	.409	7.3σ
4	.600	.270	6.3σ
	:	*	. *
:	•	•	•
15	.228	.030	4. 6σ

FIGURE 5. TRACKING PARAMETER LOOKUP

•

÷

IF HIT n:	$\mathbf{F}_{n+1} = \mathbf{F}_n + 1$	$(\mathbf{F}_{n \max} = 15)$
IF MISS:	$\mathbf{F}_{n+1} = \mathbf{F}_n - 2$	$(\mathbf{F}_{n\min} = 1)$
INITIAL HIT:	$\mathbf{F}_{0} = 0 \rightarrow \mathbf{F}_{1} = 1$	

FIGURE 6.

B-20

17

Ċ

æ

	· • • •		
•	10	NOF	IMAL
	11	PAR	ENT

- INITIATE NORMAL : N CONSECUTIVE HITS
- NORMAL DROP : M CONSECUTIVE MISSES

FIGURE 9.

4

i,

5

PRIMARY/SECONDARY CORRELATION

- PRIMARY SEARCH ALL TRACKS
- SECONDARY SEARCH NORMAL TRACKS

B-23

21

....

Phone C. R.

B-25

FIGURES 10-11-12-13. CORRELATION/SMOOTHING FOR DELAY TRACKS

ı

e

...

. •

FIGURES 10-11-12-13. CORRELATION/SMOOTHING FOR DELAY TRACKS

i.

2

۴

÷

B-29

4

.45

2

ę

۳

•

6

÷

8

B-31

ч,

ę

ę

.

DETERMINATION OF BIN SIZES

Ω

-1

٩

FIGURE 20.

10

1

٤

ŝ

ø

B-35

APPENDIX A

Delay Tracking Program

This program was designed to improve system performance by enhancing the reliability and accuracy of delay tracking. The improvement results in an overall increased immunity to noise and a reduced susceptibility to data discontinuities. This program is a simplified version of the complete system described in the body of the report.

The program consists of six routines:

- 1. Main routine ARCON provides the bulk of logical and control operations of all other routines.
- 2. Routine INITIA performs the process of new track initiation.
- 3. Routine INSERT inserts new tracks which are initiated by INITIA-routine into track file.
- 4. Routines LOOKTR and QUEST look for a track of the proper status which should be continued and the data for the job.
- 5. Routine DROP eliminates tracks which cannot be continued properly (see flow chart of the algorithm).

2

.0 (MAY 72) – s – s – s – " () + s – s	OS/36D FORTRAN H
CC	MPILER O	PTICNS - NAME = MAIN, O	IPT=01,LINECNT=50,SIZE=00CDK,
2			NOLIST, NODECK, LOAD, MAP, NOEDIT, ID, NO XREF
13		DIMENSION TRC()R.4.2)	ATNIKACK, NMB, NFKM, NMBR, KODTR/PARAM, DT)
4		DIMENSION DT(18.11).N	TRACK(2) . K DDTR (2) . NMBR (18. 4. 2) . KDATA (19)
5		DIMENSION PARAM(15,3)	01121 (18) (12) (11) (11) (10) (12) (N)A(4(18)
6		NCATA=10	
7		<u>NI=4</u>	
8		NHITLM=3	
<u>عـــــ</u>	•	LE (NEDAL) 2 1	
0 }	2	N FRM=NFOM+1	····································
2		DC 7900 NN=1.18	
3		CC 6700 KK=1.4	
4		DC 6600 LM=1,5	
5		NST (NN, KK, LM) =0	
6	6700	CONTINUE	
1	7.000	CCNTINUE	(s) (s) (1950; 01070; 1951; 1957) (s)
<u>к</u> С		CALL INITIA(OT, TRC, NS	T, NTRACK, NDATA, NT, NMBP, NMB, NFRM)
<u> </u>		<u>UU 11 1=1.18</u>	233
v 1	. 11	NEMIALI/=1 CT(1,1)=7777	· · · · · · · · · · · · · · · · · · ·
2		RETURN	
3	<u> </u>	NERMENERM+1	
4		CC 3 NPASS=1,2	
5		IPEGIN=1	and the second state of the second
6		JBEGIN=0	and the state of t
7		I=NTRACK(NPASS)	
8	· · · · · · · · · · · · · · · · · · ·	IF(I)3,3,4	
9	4	NPI=KODTR(NPASS)	
0		CU 5 KP=1,I	· · · · · · · · · · · · · · · · · · ·
2	500	ECHATION	
2 7	300	WRITE (A.SSIIRECIM, DE	CIN I NOT
4	55	FERMAT(1X.4110)	G 1)(J, 1, 1)(F, L.
5		CALL LCOKTR(ISEGIN+JB	EGIN.NPT.NST.NT) STATE OF THE
6		PRED=TRC(IBEGIN, JBEGI	N, 1)+TRC(IBEGIN, JBEGIN, 2)
7		UPBIN=PRED+PARAM(NST)	TBEGIN, JBEGIN, 3), 3)
8		DCWBN=PRED-PARAM(NST(IBEGIN, JBEGIN, 3), 3)
<u>9</u>		CALL QUEST (IREGIN, DT, I	NDAIA, DOWBN, UPBIN, PRED, ID, ND)
2 1	4	IFIND=110+1+8 TEINDASS_115 15 15	
* 2	<u></u>	TELNEASS-112.0.12	
3	9	NST(IBEGIN_IREGIN_41=	NSTITECTN, IRECTN, 41+1
4		IF(NST(IBEGIN.JBEGIN.	4)-MSLIM)18.18.13
5	12	NST(IBEGIN, JBEGIN, 4)=	NST (TBEGIN, JBEGIN, 41+2
6		IF(NST(IBEGIN, JBEGIN,	4)-MSLIM)10,10,13
7	10	IEINSTIBEGIN, JBEGIN,	31-2114,14,15
_	16		*
			ار ای مرجعات الحسو المتحقین می ورد مرجع المرجع ا الم
			B_ 27
			

ì

۹

Ŷ

4

¥
	14	NST(IBE	GIN, JBEGIN, 3)	=1						• ••••
	15	NST(19	GIN, JBEGIN, 3)	=NST(IBEGI	N, JBEGIN,	3}-2		سینین بنا ورفینید، انتخابو		
	.13	NST (IF	FGIN.JBEGIN.1)=0		an aig Shi hite	ana si			
	<u>्र</u> से स	NTRACK	NPASS J=NTRACK	(NPASS)-1						
		CALLO	REPENST .NMBR . I	BEGIN, JBEG	IN)				•	
	. •	GC TO	j		·		برجام فيسه بعر ديون سرجين			
	7	I F (NPAS	55-113,16,17		• *		· · ·	•		
	16	NSTIB	GIN, JBEGIN, 4)	=0						
	18	TRC(IB	GIN, JBEGIN, 1)	=PRED+PARA	M(NST(IBE	EGIN, JO	EGIN, 31	,1)*		-
	•••	1 (DT(IB)	EGIN, ID)-PRED)			 	د. سودن درینو سیست	د . د مد جد و ا و من د		
		TN=NST	(IBEGIN, JBEG IN	,4)+1				MANIA		10
		TRC(IB	FGIN, JBEGIN, 2)	=TRCIIBEGI	N, JBEGIN	21+				·
		1PARAM (NST(IBEGIN, JBE	GIN,3),2)*	(DT(IBEG)	[N,ID)-	PREDI	IN .		
		TEINPA	55-113,24,19				ر. مزد همونیت برده مند و	 		
	17	NSTIT	FGIN.JBEGIN.5)	=NST(IBEGI	N.JBEGIN	5)+1		• •		
	• 1		18			/	·	 	·	-
	19	TEINST	(IBEGIN. JBEGIN	.5)-NHITLM	124,27,2	7	· · · ·			
	27	IF(TRC	(IREGIN, JBEG IN	,2))20,21,	21	-			· · · · · · · · · · · · · · · · · · ·	
	2.)	V = t - TR	CITBEGIN.JBEGI	(N.2))				munn a		, ,
	2.5	01 10	22				a Astin Istation	n an an Anna anna an Anna anna an Anna		
	21		IBEGIN. IBEGIN.	2)		ingini di secono di				
	イン	~ TE(V-20	MAX123.23.13				international distances	میر در این ایران سیر میکند در د.		
	22	<u> </u>	EGIN. IBEGIN. 2)	=2			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		:	
	25	NST 10	EGIN IBEGIN. 41	=0		• • • •	· · · · ·			
			$L_1 = NT PACK (1) $	•						
		N TRACK	(2) - NTDACK(2)-	-1			•			
			LIBEGIN, IREGIN	1.3)-15)25	26.25					····· ,
•		NCTIT	FGIN. IREGIN. 3)	ENSTLIBEG	N. JBEGIN	.3)+1		an an Anna an Anna an Anna Anna Anna An		···· · · ·
		CALL Y	NCERTITEC. MST.	NMBR NERM	IBEGIN. J	BEGIN)	· · · · · · · · · · · · · · · · · · ·	· · · · · ·		
	26		NASTO NOATA					1		
		01(18F	GIN NA)=DTUIBE	GIN.NA+1)		1.9.4.				
			TRECTN-NA)-777	77. 128. 5. 24	3		1999 - A.	i mila 1773. Na si manasi		
		CONTIN	110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
	20	CONTIN CONTIN	115						· · · · · · · · · · · · · · · · · · ·	· · · · ·
-	3		NITIA(DT.TRC.	NST.NTRACK	NDATA .NT	.NMBR .	NMB , NER	M).		· · ·
		06 30		na anna a' san anna san san san san san san san sa		2019 2019		· · · · · ·		
		VENTA (1)=1;±0	A A DE A A DE ANNE ANNE AN		فمدت بدرار	الي در مراقع المالي. مربقه باکارشو بورو قارفي	an Chata Canada	· · ·	
• • •	20	//////////////////////////////////////	\=7777.	in an	· · · · · · · · · · · · · · · · · · ·	5 8 7 7 1 1 1 1 5 8 7 9 8 9	មួនសារជាតិសុខ។ នេះរាជាតិសុខ។	na ann an s Na NG St	•	
	50	PETIRN		t ett		e Arteliji Erre Izrazeri	ي مقد الد	ار المنافقات (الماري). المان المان (الماري)		
	• • • • • • • • • •	END					A MIC DUM	ендина Пода М		
		LIND	laheri ak ing karang		•			 	.,	
								(新設市市) (1市) (1)		•
			i ti i				ارين کار کار کار در هماند کار	یہ ہے۔ سببہ تھائی میں دی		*
			альны — 22 Альны — 24	n 1924 - Chan Sharina Sharina	· · · · · · · · · · · ·	- 72 0 - 190 - 1915 - 194	- 19777775€ 1997 - 1997	ana ser en Altaria	c ·	e- .+
			1946-6-444 - 1		· · ·	Jrev: Jrevenania	ل الله في التي يا 10 م. الديلانية محمد شيوهو جمع	ر ا د ای د از سندو که ای شریط	بر آب هم سوسو دو م	
		• • • • • • • • • • • • • • • • • • • •	and a second a second for the	***.****		er er er son i Henne	10 m 10 m 20 10 g 6 m 10 m	an e negerie Geografie	6.5	
				S. 4. 2		- €) •' "> •••	arts dift. L'arts m a rts ra		ل يو يستوويني ال	••••
••••	· •			· · · ·						
·	• • • • • •	•• ···			• •					
										· .
				······································	·				35	
							• •			
••	• • • • • •		• • • •	B-	-38					
										··

6 (M4	AY 72)			OS/360	FORTRAN H	
			- NAME=	MAIN, OPT=	01.LINECN	T=50,SIZE=000	0K,
			SOURCE	EBCDIC,NO	LIST. NODE	CK, LDAD, MAP, N	DEDII, LD, NAXREE
2		SUBROU	TINE INI	TIA(DT,TRC	19-4-21-N	(CK + NUA IA + MI + N IST () R • 4 • 5 } • NT	RACK(2) • NYBR(13•4•2
3		DIMENS	TON DING	6.9 I.L.; 9.1 K.L.) 4	1.0,4,2.1.91	1311209.1922.101	
4 5		VAVER=	-1.				
6		CG 15	I=1,18				
<u> </u>		К=0					
8 .]=1,NŦ	1.1.5			
9	1	K = K + 1	الم السلو و ال وسلسل	L + L + . 2			
1	1 5	CCNTI	NUE				
2		IF(K)	1,15,7				
3	7	NH=0					
4		00.8	J=1,K				
<u> </u>		 	=1 NDATA				
7		IFIDT	(1,1) - 777	7.110,14,1	LO		
8	10	IF(DT	(I,L)-D)9	,9,11			
9	<u> </u>	<u>C=DIL</u>	<u>I.L.)</u>				
20	~						
<u>'1</u>	14		1.18.17				
22	17	_NE=NH	+1				
24		CINIJ)=D				
25	·	_0C_13	_L=LL,NDA	TA			
26			L}=DI(1,L	.+1) 7 113.8.1	3		
29	13		NUE				
29	8	CCNTI	NUE				
30	18	IF(NH)1,15,19				
31	19	<u></u>					
32		DC 12	L=1, NI T(T, 1, 3)	1.16.12			
<u>34</u> 34	16		•1•1)=1	[
35	10	<u>_NST(I</u>	12)=0				
36		NST (I	,L,3)=1				
37		<u>NST(I</u>	<u>4)=Ω</u>	· · · · · - · - ·			
38		NST (1	+L+5)=U	ACK(2)+1			
<u> 39</u> 40			(.1.1) = DI	N(J)			
41		TRC	L.2)=VA	VER			
42		J=J+1	-				
43		<u>NMB=N</u>	<u>IM8+1</u>				
44		NMBRI CALL	IIILII=N	MB 90 - NST - NM8	R.NERM.I.	.1.)	
92 46		TF(J-	-NH) 12 - 12	•15	19 2 19 19 19 19 19 12 18 1	,	
47	12_	CENT					

					, •··		
						•	
							36

ą.

T.2.	CENTINUE	
21	CENTINUE	
20	CENTINUE	•
·····		
		· · · · · · · · · · · · · · · · · · ·
	anna an ann an ann an ann an ann an ann an a	
	•	
**		
		• • • • • •
• • ••••••••		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
	and and the second s	
		·
• • • • • • • • • • • • • •	n bann a maraichte an an an an ann an ann ann an ann an an	

		·····
		· · · · · · · · · · · · · · · · · · ·
··· - ·••• ••• ••• •••		
		n na
		· · · · · · · · · · · · · · · · · · ·
·· · · · · ·		

~

Ç,

Ş

Ş

6 (M	AY 72) OS/360 FORTRAN H	
COMP	ILER O	PTICNS - NAME= MAIN, DPT=01, LINECNT=50, SIZE=0000K,	
2	•	SUBROUTINE LOOKTR(IBEGIN, JBEGIN, NPT, NST, NT)	
3	·	CIMENSION_NST(18,4,5)	
4		IF(JBEGIN-NT)5+6+1	
5	5	JREGIN=JREGIN+1	
5	4	GLIU 7	
۹		ISEGIN=IBEGIN+1	
9		DC_1_I=IBEGIN, 18	
5		CC 2 J=JBEGIN,NT	
L		-IE(NSL(L, J, L)J, L, 2, 3) =	
2	3	[F(NS)(1,J,Z)=NP!)2,4,2	
4 /.			
• 5	<u>1</u>	CGNT INUE	
6	4	I REGIN=I	
7		JEEGIN=J	
8		RETURN	
9			
			<u></u>
		والمحاولة والمراجعة والمحاولة والمحاورة والمحاورة والمحاولة	······································
			·····
		الوجي مواند المرب والموانية والمراجعة المرب الموانية فالمرجوب والمحافي وموجو المراجع والمراجع الموجو المراجع والمراجع و	
			<u> </u>
			38
		В-41	

¥.

¢

Ŷ

Ð

\$

₹

6 I MAY 72	2) DS/360 FORTRAN H
CCMPILER	OFTICNS - NAME= MAIN, OPT=01, LINECNT=50, SIZE=0000K,
2	SUBROUTINE OUEST (IBEGIN:DI.NUATA:DB:UB.PRED:ID.K)
3	CIMENSION_DT(18,11)
4	IC=0
5	K=0
6	CLST=10000.
. <i>L</i> 8	LE LE LINDAIA
9 9	IF(DT(IBEGIN, L),GE,DB,AND,DT(IBEGIN,I),LE,UB) GO TO 4
1	GC TO 1
24	K=K+]
3	DI=DT(IBEGIN,I)-PRED
4	
5 5 6 4	U1=(~U1) (F(D1_CT)_C)ST) GO TO }
u	I C= I
9	CLST=DI
C 1	CGNTINUE
13	RETURN
2	END
·····	

· · · · · · · · · · · · · · · · · · ·	
	в-и2 39

S

۲

٤

	1 MAX 7								
0		2]	•		OS/360	FORTRAI	NH		
C	OMPILER	OPTICNS -	NAME= N	AIN, DPT=0	1.LINEC	NT=50,SI	ZE=0000K,		
		C	SOURCE,	ACDIC NOL	IST.NOD	ECK.LOAD	MAP, NOEDI	T.ID.NOXREF	
2		SUBROUT	INE INSER	RT (TRC, NST	, NMBR, N	FRM, I,J)			
4				3,4,2 <u>,NSI</u>	(18,4,5)	L.NMBR(1	8,4,2)	<u></u>	
5		METRM=5		101412011	RESULT	10,4,201			
6		NMBR(I.	J, 2) = NMBF	$R(I \cdot J \cdot 2) + 1$					
7_		I FRM(I	I.NMBRLI	1,21)=NER	M				
8		RESULT (1	I,J,NMBR([1 , J , 2])≖T	RC(I,J,	L }			
<u> </u>	·····	IF (NMBR	LI, J, 2)-2	2011.2.1		·			
.U 1	2	IF(NST()	I,J,3)-MP	-IRM]3,4,4					-
2	<u> </u>	FCRMATIN	10.1010		EKMLAL	KI KEL			
3		WRITE (6)	1118FSU		RESULT	(1.1.6).	k=2.10.11		
4	11	FGRMAT(F20.2.9F1	0.2)					
.5		WRITE(6.	12) IFRM	L.J.11),(IFRM(I.	1.K).K=1	2,20,1)		
6	12	FCRMAT()	120,91101						
<u> </u>	• •	WRITE(6	13)RESUL	<u>1(1'1'11)</u>	. (RESUL	L(I+J+K)	•K=12,20,1	<u>}</u>	
. d 0	13.	PERMAT(-20.2,9F]	(U.Z)					
20			<u>1121-11</u>						
<u>1</u>	•	END							
								· · · · · · · · · · · · · · · · · · ·	
									-
-			·		<u>.</u>				
-									
							······································	·····	
•••	• • • • • • • • • • • • • • • • • • •			·····					
		•							
_							+n.=		•
-									
-									
				· · · · · · · · · · · · · · · · · · ·			······································	·····	
-						~~~~	·····		
_									
								••••••••••••••••••••••••••••••••••••••	
						· · · · · · · · · · · · · · · · · · ·		·····	
_	···								
-			······································						
		······································			1 .				
-					B-43			40	
-									

\$

Ø

2

٦

\$

(NAY	72)				OS/360	FORTRAN	ŧн 			
			ME= MI	AIN.OPT=	O1,LINEC	NT=50,SI	2E=0000K	1		
,0 4PILE	X 0F110	<u>SO</u>	URCE, EF	BCDIC.N	LIST, NOD	ECK,LOAD	MAP	DIT, LD.	NUXREE	
	SUB	ROUTINE	DROP(N	NST, NMBR	₹, I,J) MBD(18.4.	2)		•		
			NSLLL84	18.4.20	RESULT(18,4,20)				·
	NE1									
	IF(INST (I,J	1,3)-MF	IRM)2,1	,1					
1	IE(NMARLL	1-12 مار	0)3.3.4						
3	N=N	MBR (I,J	1+2) NINMBRE	T	(TERM(I.	,K),K=1.	M.1)			
·		2 MAT(110).10I10)						
T	WEI	ITE 16.1	IRESUL	T. (J. J. J.)), (RESULI	<u>[JeJeK]</u>	K=2.M.L			·
1	1 FCF	RMAT(F20	3.2,9F1	0.2)						
		10 2		1.1.1.1.	LIERMIT.	1.K).K=1,	10,1)			
4	. WR:	ITE(0,10	1.2)	1.1.1.1.1.1						
	<u>WR</u>	TTE (6.1	1)RESUL	.T(I,J,1), (RESUL	T(I,J,K),	K=2,10,	1)		•
¢	WR	ITE 16.1	2) I FRM (Lesell.	IERM(I	L <u>≡X (X , L</u>	<u></u>			
]	L2 FC	RMAT(12	0,9110)) 	11 (DESH	TILLE	.K=12.M	,1)		
	<u> </u>	ITE (6.1	<u>1 18ESUL</u>		1191092%	<u>,</u> , <u></u> ,				
2	2 N.M RF	TURN	21-0							
	EN						· •			
		·								
	·									
		-								
								·		
							·			
									•	
								•		
	· · · · · · · · · · · · · · · · · · ·									
	<u></u>				· .					
							· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·							
		, , , , , , , , , , , , , , , , , , ,								

☆ U. S. GOVERNMENT PRINTING OFFICE: 1977--701-346--90

2

÷

-4

بب

2

e,